Отзыв

на автореферат диссертации Кирьяновой Татьяны Денисовны «Функциональногенетическая характеристика бактерий-деструкторов хлор- и гидрокси-замещенных бифенилов и их биотехнологический потенциал», представленной на соискание ученой степени кандидата биологических наук по специальности 1.5.11 Микробиология

Актуальность темы исследования.

Проблема загрязнения окружающей среды стойкими органическими поллютантами, в частности полихлорированными бифенилами (ПХБ), представляет собой серьезную экологическую угрозу. Учитывая глобальный масштаб загрязнения и высокую устойчивость ПХБ в окружающей среде, разработка эффективных биоремедиации является крайне актуальной задачей современной микробиологии, молекулярной биологии и биотехнологии. Изучение механизмов микробной деградации, выявление и характеристика бактерий-деструкторов, а также понимание генетической регуляции этих процессов необходимо для разработки эффективных стратегий биоремедиации. Диссертационная работа Кирьяновой Т.Д. посвящена исследованию функционально-генетических особенностей бактерий, способных разлагать хлор- и гидрокси-замещенные бифенилы, что вносит существенный вклад в решение проблемы детоксикации загрязненных экосистем. Актуальность работы также обусловлена необходимостью разработки и внедрения эффективных биотехнологий для очистки окружающей среды от ПХБ и их производных, а также необходимостью изучения механизмов деградации токсикантов на молекулярном уровне. Исследования в этой области имеют важное практическое значение, поскольку они могут способствовать разработке новых биопрепаратов и технологий для очистки загрязненных территорий.

Степень обоснованности и новизны научных положений, выводов и рекомендаций.

В автореферате представлены результаты комплексного исследования, включающего выделение и анализ структуры бактериальных сообществ, выделение и детальную характеристику штаммов-деструкторов, а также расшифровку их генетического потенциала. Использование современных методов, таких полногеномное секвенирование и протеомное моделирование, позволило получить новые и важные данные о механизмах деградации ПХБ и их производных.

Научная новизна работы.

Впервые получены детальные данные о динамике бактериальных сообществ под воздействием ПХБ и бифенила в специфических экологических нишах. Показана сукцессия сообществ и отбор наиболее активных деструкторов. Впервые выявлена способность к разложению бифенила у представителей родов Bosea и Pseudoxanthomonas. Идентификация новых микроорганизмов, способных к деградации стойких органических загрязнителей, является значительным вкладом в область микробиологии окружающей среды. Впервые установлены особенности генетических детерминант, обусловливающих деградацию бифенила у выделенных штаммов. Сравнительный геномный анализ позволил идентифицировать гены, кодирующие ферменты, участвующие в деградации ПХБ, и установить их эволюционные связи. Впервые проведен полногеномный анализ штамма

Rhodococcus opacus CH628, проявляющего высокую деградативную активность. Полногеномное секвенирование позволило идентифицировать гены, кодирующие ключевые ферменты деградации ПХБ, и установить механизмы регуляции этого процесса. Впервые разработаны и проанализированы трехмерные модели α-субъединицы бифенил 2,3-диоксигеназы штамма *R. opacus* CH628. Структурное моделирование фермента BphA1 и анализ активного центра позволили получить новые данные о механизме действия фермента и его взаимодействии с субстратами.

Научные выводы, представленные в диссертации, достаточно обоснованы и подтверждены результатами современных экспериментальных исследований. Автором продемонстрировано владение современными микробиологическими, молекулярногенетическими и генетическими методами. Рекомендации, данные автором, имеют практическую значимость для разработки эффективных методов биоремедиации.

Тем не менее хотелось бы сделать небольшое замечание: Было бы логично подтвердить плазмидную локализацию генов биодеградации, проведя элиминацию плазмид.

Степень достоверности результатов исследований.

Достоверность полученных результатов подтверждается использованием комплекса современных методов исследования, адекватным объемом выборки, статистической обработкой данных.

Результаты опубликованы в виде 9 статей в журналах различного уровня, в том числе в журналах списка ВАК и высокорейтинговых журналах, входящих в 1-2 квартили международных систем цитирования Scopus и WoS, а также в виде тезисов и материалов всероссийских и международных конференций.

Теоретическая и практическая значимость работы.

Теоретическая значимость работы заключается в расширении знаний о механизмах микробной деградации хлор- и гидрокси-замещенных бифенилов. Полученные данные вносят вклад в понимание молекулярных механизмов адаптации микроорганизмов к токсичным соединениям и могут быть использованы для разработки новых стратегий биоремедиации. Практическая значимость состоит в выделении штаммов-деструкторов с высоким биоремедиационным потенциалом, которые могут быть использованы для очистки загрязненных территорий. Выделенные штаммы депонированы во Всероссийской коллекции микроорганизмов, что свидетельствует об их научной и практической ценности. Создание трехмерных моделей фермента деградации бифенила является ценным вкладом в структурную биологию и открывает перспективы для биоинженерных разработок.

Оценка структуры и оформления автореферата. Автореферат имеет четкую и логичную структуру, включает введение, общую характеристику работы, описание материалов и методов, результаты исследований и их обсуждение, заключение и выводы.

Заключение.

Диссертационная работа Кирьяновой Татьяны Денисовны на тему «Функциональногенетическая характеристика бактерий-деструкторов хлор- и гидрокси-замещенных бифенилов и их биотехнологический потенциал» является завершенным научноквалификационным трудом, выполненным на высоком научном уровне и обладающим теоретической и практической значимостью. По своей актуальности, научной новизне, теоретической и практической значимости, объему и качеству выполненных исследований диссертационная работа соответствует требованиям пп.9-14 Положения «О порядке присуждения ученых степеней», утвержденного Постановлением Правительства Российской Федерации №842 от 24.09.2013 (в настоящей редакции), предъявляемым к кандидатским диссертациям, а ее автор, Кирьянова Татьяна Денисовна, заслуживает присуждения ученой степени кандидата биологических наук по специальности 1.5.11 Микробиология.

Я, Козырева Людмила Павловна, даю согласие на обработку персональных данных, связанную с защитой диссертации и оформлением аттестационного дела Т.Д. Кирьяновой.

Козырева Людмила Павловна,

к.б.н., ученый секретарь, с.н.с. лаборатории микробиологии

ФГБУН Институт общей и экспериментальной биологии Сибирского отделения

Российской академии наук, 670047, г. Улан-Удэ, ул. Сахьяновой, д.6

Сайт: https://www.igeb.ru

Тел.8(3012)434211,

e-mail: <u>l-kozyr@mail.ru</u>, тел. 8(3012)434225

6 ноября 2025 г.

Подпись Козыревой Людмилы Павловны заверяю.

Главный специалист по кадрам Очирова Д.А.