На правах рукописи

from

Федотова Дарья Витальевна

АНАЛИЗ СМЕШАННЫХ ФОРМ ЦИКЛИЧЕСКОГО РАЗРУШЕНИЯ СТАЛЕЙ, АЛЮМИНИЕВОГО И ТИТАНОВОГО СПЛАВОВ НА ОСНОВЕ МКЭ, КОЛИЧЕСТВЕННОЙ ФРАКТОГРАФИИ И КОРРЕЛЯЦИИ ЦИФРОВЫХ ИЗОБРАЖЕНИЙ

1.1.8 – Механика деформируемого твёрдого тела

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Работа выполнена в Институте энергетики и перспективных технологий Федерального государственного бюджетного учреждения науки Федеральный исследовательский центр «Казанский научный центр Российской академии наук», г. Казань.

Научный руководитель: Шлянников Валерий Николаевич, доктор технических наук, профессор.

Официальные оппоненты: Панин Сергей Викторович, доктор технических наук (01.02.04), профессор, заведующий лабораторией механики полимерных композиционных материалов ФГБУН «Институт физики прочности и материаловедения Сибирского отделения Российской академии наук», г. Томск.

> Селютина Нина Сергеевна, доктор физикоматематических наук (1.1.8), старший научный сотрудник кафедры теории упругости математикомеханического факультета ФГБОУ ВО «Санкт-Петербургский государственный университет», г. Санкт-Петербург.

Ведущая организация: Федеральное государственное автономное образовательное учреждение высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева», г. Самара.

Защита состоится **29 апреля 2024** г. в 14:00 часов на заседании диссертационного совета Д 004.036.01 на базе Федерального государственного бюджетного учреждения науки «Пермский федеральный исследовательский центр Уральского отделения Российской академии наук» (филиал – Институт механики сплошных сред УрО РАН) по адресу: 614013, г. Пермь, ул. Академика Королёва, 1; тел: (342) 237-84-61; факс: (342) 237-84-87; сайт: www.icmm.ru.

С диссертацией можно ознакомиться в библиотеке и на сайте Института механики сплошных сред Уральского отделения Российской академии наук.

Автореферат разослан « » марта 2024 г.

Ученый секретарь диссертационного совета, доктор физико-математических наук, доцент

Дбу1С / А.Л. Зуев

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. В настоящее время оценка влияния смешанных форм деформирования на характеристики сопротивления росту трещин имеет несистемный и противоречивый характер. Отчасти это связано с тем, что смешанные формы разрушения являются одной из наиболее сложных проблем механики деформирования и разрушения, которая объединяет постановку и разработку новых методов экспериментальных исследований, задачу определения локального НДС вдоль фронта криволинейной трещины, модель интерпретации и прогнозирования скорости развития трещин и остаточной долговечности.

Актуальной является задача разработки методов комплексного расчетноэкспериментального исследования механизмов и закономерностей развития трещин при смешанных формах циклического деформирования с использованием современных вычислительных комплексов, электронных и оптических цифровых систем для основных классов конструкционных материалов (стали, титановый и алюминиевый сплавы) с максимально широким диапазоном вариации общего диапазона упруго-пластических свойств.

Целью диссертационной работы является разработка расчетноэкспериментального метода исследования механизмов и особенностей развития трещин при смешанных формах циклического разрушения с учетом свойств конструкционных материалов различных классов на основе численных расчетов, количественной фрактографии и корреляции цифровых изображений.

Цель исследования определяет следующие задачи:

1. Разработать и обосновать методику и выполнить экспериментальные исследования роста трещин для сталей, алюминиевого и титанового сплавов в полном диапазоне смешанных форм деформирования и разрушения для плоской задачи с использованием бесконтактной цифровой оптической системы.

2. Выполнить численный анализ полей напряженно-деформированного состояния (НДС), упругих и упругопластических параметров сопротивления разрушению в полном диапазоне смешанных форм разрушения по линейной теории механики трещин и нелинейным классической, градиентной и циклической теориям пластичности.

3. Разработать метод и представить интерпретацию экспериментальных результатов на основе численных расчетов параметров сопротивления разрушению для криволинейных траекторий развития трещин по линейно-упругой модели, классической (HRR решение) и циклической теориям пластичности (NKH решение).

4. Установить особенности и описать закономерности развития трещин при смешанных формах циклического разрушения с учетом упруго-пластических свойств сталей, титанового и алюминиевого сплавов.

5. Провести сравнительный анализ результатов, полученных методами конечных элементов, электронной микроскопии и корреляции цифровых изображений (DIC).

Научная новизна работы состоит в:

•разработке и экспериментальном обосновании комплексного метода исследования механизмов и особенностей развития трещин при смешанных формах деформирования основных классов конструкционных металлических материалов;

•обобщении и описании совместного влияния смешанных форм деформирования и упруго-пластических свойств сталей, титанового и алюминиевого сплавов на характеристики циклической трещиностойкости посредством новой формы нормализации диаграмм усталостного разрушения;

•сравнительном анализе распределений коэффициентов интенсивности напряжений и показателя сингулярности в вершине трещины по упругому решению, классической, градиентной и циклической теориям пластичности для нормального отрыва и смешанных форм разрушения;

•установленных различиях поведения диаграмм усталостного разрушения в зависимости от моделей нелинейного деформирования в области вершины трещины для смешанных форм деформирования;

•определении зон доминирующих механизмов разрушения по данным электронной сканирующей микроскопии, корреляции цифровых изображений, и трактовке фрактографических особенностей процессов циклического разрушения сталей, алюминиевого и титанового сплавов при нормальном отрыве и смешанных формах деформирования.

Основные положения, выносимые защиту:

• Развитие трещин начального чистого сдвига приводит к повороту траектории и возникновению смешанных форм циклического деформирования по преимущественно псевдо-нормальному отрыву с малой асимметрией контуров зон пластичности. Доминирование упруго-пластического состояния псевдо-нормального отрыва для криволинейных наклонных трещин доказано численными результатами МКЭ, прямыми фрактографическими измерениями шага усталостных бороздок на поверхностях разрушения образцов и последовательным картированием контуров зон пластичности при циклическом деформировании средствами корреляции цифровых изображений.

•Введение в конституционные уравнения поведения среды параметра масштаба структуры материала в соответствии с градиентной теорией пластичности приводит к кратному увеличению локальных напряжений по сравнению с классической моделью Хатчинсона-Розенгрена-Райса. Подобные различия обусловлены инверсией изменяющихся вкладов составляющих общей плотности дислокаций по мере удаления от вершины трещины. Показатель сингулярности численных упругопластических решений зависит от используемой теории пластичности и имеет различные значения для форм нормального отрыва и начального чистого сдвига.

•Существует диапазон относительных расстояний до вершины трещины, в котором численные результаты по МКЭ на основе классической, градиентной и циклической теориям пластичности совпадают с данными прямых измерений распределений пластических деформаций с использованием техники корреляции

цифровых изображений. Границы подобных диапазонов зависят от форм циклического разрушения в сочетаниях нормального отрыва и поперечного сдвига.

•Диаграммы усталостного разрушения в новой форме нормализованных координат в терминах упругих и пластических коэффициентов интенсивности напряжений предоставляют обобщенную оценку совместного влияния смешанных форм деформирования и упруго-пластических свойств сталей, титанового и алюминиевого сплавов на характеристики циклической трещиностойкости.

•Для всех исследованных конструкционных металлических материалов имеет место стадийность процессов циклического развития трещин и взаимосвязанная последовательность смены доминирующих механизмов разрушения. Шаг усталостных бороздок, измеренный по фрактограммам поверхностей разрушения образцов, при нагружении нормальным отрывом выше, чем при начальном чистом сдвиге и последующих формах смешанных форм циклического разрушения.

Теоретическая значимость работы состоит в формулировке, обосновании и анализе новых нелинейных параметров сопротивления сопоставительном разрушению конструкционных материалов при смешанных формах разрушения на основе классической, градиентной и циклической теорий пластичности. Новизну экспериментального плана в работе составляет предложенная форма диаграмм усталостного разрушения в нормализованных координатах для оценки совместного влияния вида нагружения и упруго-пластических свойств основных классов конструкционных металлических материалов. Новизна методического плана состоит в разработке и реализации комплексного подхода исследования характеристик развития трещин на основе МКЭ, количественной фрактографии и корреляции цифровых изображений.

Практическая значимость работы состоит в обосновании возможности количественной оценки влияния вида смешанных форм деформирования и упругопластических свойств материалов на характеристики остаточной долговечности элементов конструкций с эксплуатационными дефектами сложной формы. Установленные карты фрактографии поверхностей разрушения могут быть использованы в порядке экспертных оценок при обосновании конструктивнотехнологических решений безопасной эксплуатации элементов конструкций.

Достоверность полученных результатов подтверждается установленными совпадениями частных численных и аналитических решений с решениями других авторов, а также результатами экспериментальных исследований, выполненных в рамках данной работы.

Личное участие соискателя в получении результатов, изложенных в диссертации, состояло в анализе современного состояния исследований по теме работы; проведении экспериментальных исследований; выполнении комплекса численных расчетов в рамках линейной теории механики трещин, классической, градиентной и циклической теориям пластичности; интерпретации экспериментальных результатов; обобщении результатов, полученных методами

конечных элементов, электронной микроскопии и корреляции цифровых изображений.

Реализация работы. Результаты работы представлены в тематике научных исследований лаборатории Прочности Федерального исследовательского центра Казанского научного центра Российской академии наук.

Работа поддерживалась грантами: РНФ № 23-19-00158, РНФ № 20-19-00158, РНФ № 19-79-10160, РФФИ № 20-38-70030_Стабильность, АНТ № 07-161-ч Г 2019, РНФ № 17-19-01614.

Апробация работы. Результаты работы представлялись на Итоговых научных конференциях ФИЦ КазНЦ РАН (Казань, 2020-2023 гг.), the IGF25 - 25th International Conference on Fracture and Structural Integrity Catania (Italy, 12-14 June 2019), the 7th International Conference on Crack Paths (онлайн формат, 2021), the 6th IJFatigue and FFEMS Joint Workshop «Characterisation of Crack/Notch Tip Fields» (Dubrovnik, Croatia, 11-13 April 2022), the ECF23-23rd European Conference on Fracture 2022 (Funchal, Madeira, Portugal, 25 June-01 July 2022), XIII Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики (Санкт-Петербург, 21-25 августа 2023 г.).

В полном объеме диссертация докладывалась в Институте энергетики и перспективных технологий Федерального государственного бюджетного учреждения «Федеральный исследовательский центр «Казанский науки научный центр Российской академии наук», в Институте механики сплошных сред Уральского отделения Российской академии наук – филиал Федерального государственного бюджетного учреждения науки Пермского федерального исследовательского центра Уральского отделения Российской академии наук, на кафедре Математического моделирования систем и процессов Федерального государственного автономного образовательного учреждения высшего образования «Пермский национальный исследовательский политехнический университет», на кафедре Экспериментальной механики и конструкционного материаловедения Федерального государственного образовательного учреждения высшего образования «Пермский автономного национальный исследовательский политехнический университет»

Публикации. Результаты исследований по теме диссертации опубликованы в 9 печатных работах.

Структура и объем работы. Диссертация состоит из введения, четырех глав, общих выводов и списка использованной литературы. Материал изложен на 168 страницах, содержит 64 рисунка, 17 таблиц, список литературы состоит из 224 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обосновывается актуальность темы диссертационной работы, дается ее общая характеристика, определяются направления исследований, устанавливаются перспективы научного и практического значения решаемой задачи.

В первой главе приведен анализ современного состояния по предмету и направлениям исследований, рассматриваемых в диссертации. Становление и развитие механики сопротивления деформированию и разрушению связано с именами отечественных и зарубежных ученых: В.И. Владимирова, Р.В. Гольдштейна, А.Я. Красовского, А.А. Лебедева, Н.А. Махутова, Н.Ф. Морозова, Н.И. Мусхелишвили, В.В. Панасюка, Ю.Н. Работнова, Г.П. Черепанова, А.А. Шанявского, Д. Броека, М.Л. Вильямса, К. Миллера, Дж. Нотта, П. Париса, Дж. Райса, Дж. Си, Дж. Хатчинсона и др.

В первой главе представлен обзор экспериментальных образцов и оборудования для реализации смешанных форм разрушения. Приведены известные в литературе упруго-пластические модели состояния и развития трещин при смешанных формах деформирования и линейные и нелинейные критерии и параметры сопротивления росту трещин в экспериментальной и вычислительной механике разрушения. Рассмотрены перспективы использования количественной фрактографии и метода корреляции цифровых изображений с привлечением бесконтактных оптических систем в задачах анализа поверхностей разрушения.

На основе литературного анализа сформулирована цель и поставлены задачи исследования.

Во второй главе изложены основные методические вопросы экспериментальных исследований, оптических и цифровых измерений роста трещин при смешанных формах деформирования.

Объектом исследований в диссертационной работе выступил образец с односторонним боковым надрезом (compact tension shear (CTS) specimen). Геометрия экспериментального образца представлена на рис. 1 а. Экспериментальные образцы были выполнены из сталей Р2М и 34Х, а также алюминиевого 7050 и титанового Ti-6Al-4V сплавов, которые широко используются в элементах конструкций авиации, станционной и тепловой энергетики. Основные механические свойства исследуемых материалов приведены в таблице 1.

Материал	Е (ГПа)	σ_0 (MПa)	$\sigma_u(M\Pi a)$	n	$\overline{\alpha}$	С	γ
Steel P2M	226.9	362.4	1190.0	4.13	4.141	6165.9	8.0
Steel 34X	216.2	714.4	1260.4	7.89	0.529	5700.0	6.9
Al-alloy 7050	70.57	471.6	701.0	10.85	1.570	1750.0	7.5
Ti-6Al-4V	118.0	885.5	1289.6	12.59	1.225	2100.0	5.1

Таблица 1. Основные механические свойства исследуемых материалов

В этой таблице E – модуль упругости, σ_0 и σ_u – предел текучести и прочности материала, n и $\overline{\alpha}$ – константы деформационного упрочнения материала, C и γ – параметры нелинейной кинематической модели упрочнения Шабоша.

Таблица 2 содержит программу состоявшихся экспериментальных исследований по определению скорости роста трещин в СТЅ образцах при смешанных формах деформирования. Рассмотрены варианты нагружения нормальным отрывом (Mode I)

и начальным чистым сдвигом (Mode II). В процессе испытаний смешанные формы деформирования достигались путем изменения угла приложения нагрузки α по отношению к направлению приложенной силы *F* с помощью специальных захватов S-образной формы.

	· ·	•	•		
Материал	Приложенная	нагрузка F, кН	Угол приложения нагрузки α , ^о		
	Mode I	Mode II	Mode I	Mode II	
Steel P2M	7.0	14.0	90	0	
Steel 34X	7.3	14.8	90	0	
Al-alloy 7050	2.8-7.0	11.0	90	0	
Ti-6Al-4V	5.0-11.0	17.0	90	0	

Таблица 2. Условия нагружения экспериментальных СТЅ образцов

Схема расположения элементов испытательного и измерительного комплексов представлена на рис. 1 б. Испытания были выполнены на специализированной сервогидравлической испытательной машине Zwick/Roell HA100 с системой управления Zwick CUBAS при гармоническом нагружении с частотой 10 Гц и коэффициентом асимметрии цикла нагружения R = 0.1 при комнатной температуре (рис. 2 а). Для определения фактического положения вершины трещины на боковой поверхности образца и для непрерывного измерения длины трещины вдоль криволинейных траекторий использовался оптический инструментальный микроскоп МБС-10. Для определения полей перемещений и деформаций на рабочей поверхности экспериментальных образцов использовалась бесконтактная цифровая оптическая система VIC-3D.

Рис. 1. Геометрия экспериментального CTS образца (а) и схема расположения элементов испытательного и измерительного комплексов (б)

В результате проведения серии испытаний, согласно табл. 2, были получены экспериментальные траектории развития трещин СТЅ образцов (рис. 3 а) и длины трещин вдоль этих траекторий в зависимости от накопленного количества циклов

нагружения (рис. 3 б, в). Установлены особенности поворота экспериментальных траекторий при нагружении начальным чистым сдвигом в зависимости от упругопластических свойств рассматриваемых конструкционных металлических материалов.

Рис. 2. Сервогидравлическая испытательная машина Zwick/Roell HA100 (а) и испытанные CTS образцы при нормальном отрыве (б) и начальном чистом сдвиге (в)

Полученные во второй главе первичные экспериментальные данные являются основой для комплексного исследования с применением МКЭ, количественной фрактографии и корреляции цифровых изображений.

Рис. 3. Экспериментальные траектории трещин в условиях начального чистого сдвига (а) и кривые развития трещин для сталей (б) и сплавов алюминия и титана (в)

В третьей главе представлены расчетно-экспериментальные поля параметров напряженно-деформированного состояния, результаты расчетов коэффициентов интенсивности напряжений и показателей сингулярности для смешанных форм циклического разрушения по линейной и нелинейным теориям механики трещин.

Численный анализ НДС образцов выполнен в соответствии с моделями упругого и пластического деформирования в вершине трещины по классической, градиентной и циклической теориям пластичности: Классическая теория пластичности по модели Хатчинсона-Розенгрена-Райса основана на степенном законе упрочнения Рамберга-Осгуда:

$$\sigma_{ij} = K_P r^{-1/(n+1)} \tilde{\sigma}_{ij}(\theta), \quad \begin{cases} \varepsilon = \sigma/E, & \sigma \le \sigma_0 \\ \varepsilon = \sigma/E + \bar{\alpha} \left(\sigma/E\right)^n, & \sigma > \sigma_0 \end{cases}$$
(1)

где K_p – пластический КИН, r – расстояние от вершины трещины, $\tilde{\sigma}_{ij}(\theta)$ – безразмерные полярные функции напряжений, E – модуль упругости, σ_0 – предел текучести материала, n и $\bar{\alpha}$ – константы деформационного упрочнения материала.

Градиентная теория пластичности:

$$\dot{\varepsilon}^{p} = \dot{\varepsilon} \left(\frac{\sigma_{e}}{\sigma_{flow}} \right)^{m} = \dot{\varepsilon} \left[\frac{\sigma_{e}}{\sigma_{ref} \sqrt{f^{2} \left(\varepsilon^{p} \right) + l\eta^{p}}} \right]^{m}, \quad \dot{\sigma}_{ij} = K \dot{\varepsilon}_{kk} \delta_{ij} + 2\mu \left[\dot{\varepsilon}_{ij} - \frac{3\dot{\varepsilon}}{2\sigma_{e}} \left(\frac{\sigma_{e}}{\sigma_{flow}} \right)^{m} \sigma_{ij} \right]$$
(2)

$$\rho = \left[\sigma_{ref} f\left(\varepsilon^{P}\right) / M \alpha \mu b\right]^{2} + \overline{r} \frac{\eta^{P}}{b}, \quad l = 18\alpha^{2} \left(\mu / \sigma_{y}\right)^{2} b \tag{3}$$

где σ_{flow} – напряжения течения, σ_{ref} – референсные напряжения, η^p – градиент пластической деформации, ρ – полная плотность дислокаций, l – масштабный параметр структуры материала, α – эмпирический коэффициент, μ – модуль упругости при сдвиге, b – вектор Бюргерса.

Циклическая теория пластичности по модели Шабоша:

$$F = \sqrt{\frac{3}{2} (\mathbf{s} \cdot \boldsymbol{\alpha}) \cdot (\mathbf{s} \cdot \boldsymbol{\alpha})} - R = 0, \quad \boldsymbol{\alpha} = \frac{C}{\gamma} \cdot \left(1 - e^{-\gamma \cdot \varepsilon_{pl}} \right), \quad \boldsymbol{\alpha} = \frac{C}{\gamma} \cdot \left(1 - e^{-\gamma \cdot \varepsilon_{pl}} \right)$$
(4)

где *s* – девиатор напряжений, α – девиатор обратных напряжений, *R* – константа, определяющая предел текучести, *C* и γ – параметры нелинейной кинематической модели упрочнения Шабоша.

Численные расчеты в рамках настоящей работы выполнены с привлечением вычислительного комплекса ANSYS. Для определения упругих И упругопластических параметров напряженно-деформированного состояния в области вершины трещины сформированы конечно-элементные модели экспериментальных образцов (рис. 4). Моделирование расчетных схем МКЭ было реализовано с учетом реальных геометрических параметров CTS образцов и экспериментальных условий их нагружения. Сформированы расчетные схемы для каждой экспериментальной траектории трещины (для каждого промежуточного положения вершины трещины вдоль траекторий роста) CTS образцов из сталей P2M и 34X, алюминиевого 7050 и Ti-6Al-4V титанового сплавов в полном диапазоне смешанных форм деформирования.

Рис. 4. Сетка конечных элементов вдоль криволинейной траектории трещины (а) и в области вершины трещины (б)

В результате численных расчетов были получены общий набор параметров НДС и контуры зон напряжений выше предела текучести материала по траекториям роста трещин в полном диапазоне смешанных форм деформирования (рис. 5).

Рис. 5. Контуры напряжений в зоне нелинейных деформаций по траекториям роста трещин стали Р2М: при нормальном отрыве (а) и начальном чистом сдвиге (б) с последующими смешанными формами деформирования (в)

Задача численных расчетов состояла в определении и последовательном сравнении результатов по линейному упругому решению, классической, градиентной и циклической теориям пластичности, на основе которых вычислены упругие и упруго-пластические параметры для интерпретации экспериментов по скорости роста трещин. Первый этап сравнения относится к распределениям компонент напряжений в вершине трещины по классической теории пластичности по модели Хатчинсона-Розенгрена-Райса (HRR) и градиентной (CMSG) теориям пластичности (рис. 6). Установлено, что основным эффектом градиентной теории пластичности является кратное повышение значений напряжений в области вершины трещины. Второй этап сравнения состоял в сопоставлении компонент напряжений в области вершины трещины по классической (HRR) и циклической (NKH) теориям пластичности в приложении ко всему набору условий нагружения и свойств рассматриваемых металлических (рис. 7). конструкционных материалов Установлено, что

отличительной особенностью модели нелинейного кинематического упрочнения является зависимость полученных результатов от накопленного количества циклов нагружения и стабилизация результатов на определенной стадии долговечности.

Рис. 6. Распределения напряжений в области вершины трещины по классической (HRR) и градиентной (CMSG) теориям пластичности: при нормальном отрыве (а) и начальном чистом сдвиге (б) с последующими смешанными формами деформирования (в)

Рис. 7. Распределения сдвиговых и окружных напряжений в вершине трещины по классической (HRR) и циклической (NKH) теориям пластичности стали P2M: при нормальном отрыве (а) и начальном чистом сдвиге (б) с последующими смешанными формами деформирования (в)

Обобщением численных результатов диссертационной работы являются найденные для четырех конституционных моделей поведения среды (линейная упругость, классическая, градиентная и циклическая пластичность) зависимости линейных И нелинейных коэффициентов интенсивности напряжений от относительной длины трещины для каждого из рассмотренных конструкционных материалов со своим набором упруго-пластических свойств в условиях нормального отрыва (Mode I) и начального чистого сдвига (Mode II).

Рис. 8. Распределения упругих и пластических КИН вдоль траекторий роста трещин в условиях нормального отрыва и начального чистого сдвига по различным конституционным моделям поведения среды

В завершающем разделе главы представлено сопоставление результатов численного упруго-пластического анализа по различным конституционным моделям среды с результатами экспериментальных измерений деформаций в области вершины трещины с привлечением бесконтактной цифровой оптической системы VIC-3D. На рис. 9 в качестве примера показаны экспериментально полученные VIC-3D контуры деформаций для стали P2M в условиях нормального отрыва и начального чистого сдвига с последующими смешанными формами деформирования. На рис. 10 дано сравнение распределений деформаций в вершине трещины для образцов из стали P2M в полном диапазоне смешанных форм деформирования по классической (HRR) и циклической (NKH) теориям пластичности с результатами прямых измерений, полученных методом корреляции цифровых изображений VIC-3D, и установлены области их взаимного соответствия.

Рис. 9. Экспериментальные VIC-3D зоны пластических деформаций по траекториям роста трещин стали P2M: при нормальном отрыве (а) и начальном чистом сдвиге (б) с последующими смешанными формами деформирования (в)

Рис. 10. Распределения эквивалентных деформаций на продолжении трещины для стали Р2М: нормальный отрыв (а) и начальный чистый сдвиг (б) с последующими смешанными формами деформирования (в)

B четвертой главе представлены результаты комплексных расчетноэкспериментальных исследований развития усталостных тещин ДЛЯ сталей, циклического алюминиевого и титанового сплавов при смешанных формах

разрушения на основе численных расчетов и количественной фрактографии.

На основе экспериментальных данных с привлечением численных результатов по линейному упругому решению, классической (HRR) и циклической (NKH) теориям пластичности построены диаграммы скорости роста трещин в CTS образцах из сталей P2M и 34X, алюминиевого 7050 и титанового Ti-6Al-4V сплавов в условиях нормального отрыва (Mode I) и начального чистого сдвига (Mode II). На рис. 11 представлены диаграммы усталостного разрушения стали P2M и сплава титана в терминах упругих (рис. 11 а, б) и классических пластических коэффициентов интенсивности напряжений по HRR решению (рис. 11 в, г). Получено, что скорость роста трещин при нормальном отрыве выше, чем при смешанных формах циклического разрушения, а эффект различий зависит от пластических свойств материалов.

Рис. 11. Сравнение скорости роста трещин при нормальном отрыве и начальном чистом сдвиге по упругому решению (а, б) и классической теории пластичности (в, г) для стали Р2М и сплава титана Ti-6Al-4V

Результаты для стали P2M (рис. 12 а), титанового (рис. 12 б) и алюминиевого (рис. 12 в) сплавов, представленные на рис. 12, продолжают линию сравнения скорости роста трещин при нормальном отрыве и начальном чистом сдвиге с акцентами при интерпретации на различия между классической и циклической теориями пластичности. Следствием учета поциклового изменения пластических деформаций в вершине трещины при расчете КИН по модели кинематического упрочнения явился присущий каждому испытанному материалу свой диапазон

диаграмм усталостного разрушения, который отличен от интерпретации данных в терминах традиционных КИН. На этой основе высказаны рекомендации о преимущественном использовании нелинейных КИН по модели циклической пластичности в силу возможности учета истории нагружения.

Рис. 12. Сравнение скорости роста трещин при нормальном отрыве и начальном чистом сдвиге по классической (HRR) и циклической (NKH) теориям пластичности для стали P2M (а), титанового (б) и алюминиевого (в) сплавов

Для удобства оценок и сравнения характеристик сопротивления циклическому разрушению материалов с различными упруго-пластическими свойствами введены новые безразмерные координаты в терминах пластических КИН, в качестве которых могут выступать результаты по классической (HRR) и циклической (NKH) теориям пластичности. Предложенные параметры записываются в следующем виде:

$$da/dN_{norm} = 1 - \frac{da/dN_{f} - da/dN_{i}}{da/dN_{f} - da/dN_{0}}, \quad K_{P_{norm}} = 1 - \frac{K_{P_{f}} - K_{P_{i}}}{K_{P_{f}} - K_{P_{0}}}$$
(9)

где $(da/dN)_0$ и $(da/dN)_f$ это значения скорости роста трещины в первой точке диаграммы усталостного разрушения и при окончательном циклическом разрушении, соответственно; $(da/dN)_i$ обозначает текущее значение скорости роста трещины. Нормирование пластического КИН выполнено аналогичным способом.

Рис. 13. Нормированные диаграммы скорости роста трещин в терминах пластических КИН при нормальном отрыве (а) и начальном чистом сдвиге (б)

Из представленных данных в предлагаемом формате (рис. 13) установлено, что минимальным сопротивлением циклическому разрушению обладает сталь 34Х, а максимальные свойства показывают алюминиевый 7050 или титановый Ti-6Al-4V сплавы в зависимости от формы деформирования (нормальный отрыв (рис. 13 а) или начальный чистый сдвиг (рис. 13 б).

После завершения усталостных испытаний поверхности разрушения каждого образца подвергались тщательному фрактографическому анализу с использованием сканирующего электронного микроскопа Merlin Zeiss для установления доминирующих механизмов разрушения. В качестве примера на рис. 14 представлены полученные фрактограммы алюминиевого сплава вдоль траекторий роста трещин при нормальном отрыве (рис. 14 а, б, в) и начальном чистом сдвиге (рис. 14 г, д, е)

Установлено, что на начальной стадии роста трещины (рис. 14 а, г) доминирует строчечность с элементами сдвига по полосам скольжения, в стадии устойчивого роста трещины (рис. 14 б, д) преобладает бороздчатый рельеф периодической структуры и для завершающей стадии циклического разрушения (рис. 14 в, е) характерен вязкий ямочный рельеф с интенсивным растрескиванием. Подобная последовательность доминирующих механизмов циклического разрушения наблюдалась и в остальных исследованных металлических материалах.

Рис. 14. Поверхности разрушения сплава Al-alloy 7050 вдоль траекторий роста трещин при нормальном отрыве (а, б, в) и начальном чистом сдвиге (г, д, е)

На рис. 15 представлены количественные показатели стадий устойчивого развития трещин в СТЅ образцах из основных классов конструкционных материалов в виде зависимостей шага усталостных бороздок от длины трещины. Установлено, что форма нормального отрыва (рис. 15 а) характеризуется более интенсивным приращением шага бороздок по сравнению с формой начального чистого сдвига с

последующими смешанными формами разрушения (рис. 15 б). Кроме того, получено, что в высокопрочных материалах (сталь 34Х и титановый сплав) шаг бороздок существенно выше по сравнению с материалами средней прочности (сталь Р2М и алюминиевый сплав).

Рис. 15. Зависимость шага усталостных бороздок от длины трещины при нормальном отрыве (а) и начальном чистом сдвиге с последующими смешанными формами деформирования (б)

Результаты выполненного фрактографического анализа замкнули комплексность развиваемого подхода и позволили доказать следующие результаты настоящей работы:

•собственно появление и развитие усталостных бороздок при начальном чистом сдвиге;

•упруго-пластический характер циклического деформирования по преимущественно псевдо-нормальному отрыву с малой асимметрией контуров зон пластичности;

•необходимость использования нелинейных коэффициентов интенсивности напряжения для интерпретации экспериментальных результатов;

•наличие конечного радиуса кривизны вершины трещины и отсутствие угловой сингулярности при повороте трещины в условиях начального чистого сдвига;

•различия в кинетике усталостных бороздок для нормального отрыва и смешанных форм разрушения в зависимости от свойств материалов;

•корреляцию шага бороздок и скорости развития трещин нормального отрыва и смешанных форм разрушения;

•корреляцию ветвления трещин начального чистого сдвига и фазовых полей разрушения.

Основные выводы

Цель работы заключалась в разработке и экспериментальном обосновании комплексного расчетно-экспериментального метода исследования механизмов и особенностей развития трещин при смешанных формах циклического разрушения с учетом свойств основных классов конструкционных металлических материалов сталей, алюминиевого и титанового сплавов. Основные выводы по достижению поставленной цели состоят в следующем.

1. Разработан и реализован комплексный метод исследования и интерпретации характеристик циклической трещиностойкости металлических материалов при смешанных формах деформирования на основе МКЭ, количественной фрактографии и корреляции цифровых изображений.

2. Проведены экспериментальные исследования характеристик циклической трещиностойкости для форм нормального отрыва и начального чистого сдвига и получены диаграммы усталостного разрушения для двух типов сталей, титанового и алюминиевого сплавов.

3. Для экспериментальных траекторий роста трещин численно на основе МКЭ получены и описаны распределения локальных упругих и упруго-пластических характеристик состояния материала по классической, градиентной и циклической теориям пластичности для смешанных форм деформирования, включая поля параметров НДС, коэффициенты интенсивности напряжений, плотности дислокаций и типа сингулярности.

4. Проведен сравнительный анализ экспериментальных данных по скорости роста трещин смешанных форм деформирования в сталях, титановом и алюминиевом сплавах в терминах пластических коэффициентов интенсивности напряжений по классической и циклической теориям пластичности.

5. Введена и обоснована новая форма представления диаграмм усталостного разрушения для обобщения и описания совместного влияния смешанных форм деформирования и упруго-пластических свойств сталей, титанового и алюминиевого сплавов.

6. Экспериментально установлены и подтверждены фрактографическим анализом закономерности и особенности развития трещин в сталях, титановом и алюминиевом сплавах при смешанных формах циклического разрушения.

7. На основе экспериментальных и численных данных проведен сравнительный анализ результатов и установлены области взаимного соответствия параметров напряженно-деформированного состояния, полученных на основе МКЭ, количественной фрактографии и корреляции цифровых изображений.

Основные печатные работы по теме диссертации:

1. Zakharov A.P., Shlyannikov V.N., Tartygasheva A.M., **Fedotova D.V.** Couple effects of mixed mode biaxial loading and crack tip configuration on plastic stress intensity factor behavior at small and large scale yielding // Procedia Structural Integrity. – 2019. – Vol. 18. – P. 749-756.

2. Shlyannikov V.N., **Fedotova D.V.** Crack growth and plastic, fracture process and damage zones behavior under mixed mode loading // Structural Integrity. – 2020. – Vol. 16. – P. 117-123.

3. Shlyannikov V.N., **Fedotova D.V.** Distinctive features of crack growth rate for assumed pure mode II conditions // International Journal of Fatigue. -2021. - Vol. 147. - 106163.

4. **Fedotova D.**, Khamidullin R., Shlyannikov V. Inversion of dislocation densities under mixed mode fracture // Engineering Failure Analysis. – 2022. – Vol. 138. – 106311.

5. **Fedotova D.**, Khamidullin R. Mixed mode crack paths in terms of plastic stress intensity factors based on conventional and strain gradient plasticity // Procedia Structural Integrity. – 2022. – Vol. 39. – P. 419-431.

6. Shlyannikov V., **Fedotova D.**, Khamidullin R. Couple analysis of DIC and FEM to quantify strain fields and crack-flank displacements in structural materials under cyclic mixed-mode I/II fracture // Procedia Structural Integrity. – 2022. – Vol. 42. – P. 714-721.

7. Shlyannikov V., **Fedotova D.**, Khamidullin R. Mixed mode crack growth analysis using cyclic plasticity model // Theoretical and Applied Fracture Mechanics. -2023. -104136.

8. **Федотова Д.В.**, Хамидуллин Р.М. Развитие трещин в условиях начального чистого сдвига // Труды Академэнерго. – 2020. – № 4. – С. 49-56.

9. Хамидуллин Р.М., **Федотова** Д.В. Анализ полей напряжений в вершине трещины и параметры сопротивления разрушению в условиях градиентной пластичности // Вестник ПНИПУ. Механика. – 2021. – № 4. – С. 136-148.