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Введение

Актуальность работы
Развитие технологий производства сверхчистых монокристаллических мате-

риалов и метаматериалов с уникальными термомеханическими характеристиками

вызывает интерес к изучению свойств таких материалов и протекающих в них дина-

мических процессов. В частности, изучение нестационарных волновых процессов

в монокристаллах важно для решения проблем отвода тепловой энергии, возника-

ющих в микроэлектронике [1]. Для описания нестационарных волновых процессов

применяются дискретные и континуальные модели механики деформируемого

твёрдого тела. Дискретные модели, описывающие тело как совокупность взаимо-

действующих частиц, дают дополнительную информацию о волновых процессах,

описание которых макроскопическими моделями (основанными на классической

механике сплошных сред) может оказаться затруднительным [2] из-за необходимо-

сти выбора подходящих определяющих соотношений.

Один из примеров таких процессов — волновой перенос тепловой энергии,

при котором наблюдаются существенные отклонения от закона Фурье [295, 63, 65,

67, 71]. Кроме того, перенос тепловой энергии волнового характера наблюдается

в диэлектриках при низких температурах [72, 73, 74, 76]. Поскольку основным

носителем тепловой энергии в диэлектриках являются упругие волны, распростра-

няющиеся в кристаллических решётках, задача о переносе тепловой энергии в

диэлектрических материалах может решаться методами механики деформируемого

твёрдого тела. Особый интерес представляют процессы, происходящие вблизи

границ, поскольку в экспериментах, связанных с переносом тепловой энергии, на

границах образцов, как правило, либо проводится измерение, либо прикладывается

внешнее воздействие.

Необходимость выбора определяющего соотношения зачастую возникает

при описании термомеханических процессов вдали от теплового равновесия. В
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подобных условиях может потребоваться введение нескольких температур, соот-

ветствующих различным степеням свободы. Так, результаты численных расчётов

методом молекулярной динамики демонстрируют наличие нескольких температур

при распространении ударных волн [230, 231]. Экспериментально показано, что

при быстром лазерном воздействии на твёрдые тела кристаллическая решётка

и электронная подсистема могут иметь различные температуры [237]. Разные

температуры наблюдаются также при волновом переносе тепловой энергии в слабо-

нелинейных кристаллах [282]. После прекращения внешнего воздействия система,

выведенная из состояния равновесия, стремится к нему вернуться. Переход к

состоянию равновесия сопровождается выравниванием энергий, соответствующих

различным степеням свободы. Механизмом данного процесса является обмен

энергии между собственными формами [284], для описания которого необходимо

учитывать нелинейность.

Таким образом, исследование переноса и перераспределения энергии в дис-

кретных средах с учётом влияния граничных условий и нелинейных эффектов

является актуальной задачей механики деформируемого твёрдого тела. В насто-

ящей работе данное исследование проводится на примере простых дискретных

моделей деформируемого твёрдого тела: одномерных цепочек и гранецентриро-

ванной кубической решётки. Особое внимание уделяется поведению дискретной

среды вблизи границы (свободной либо подверженной силовому/кинематическому

воздействию), сравнению результатов для бесконечных и полубесконечных сред и

влиянию нелинейности.

Степень разработанности темы исследования
Динамические процессы в деформируемых телах освещены многочисленны-

ми исследованиями. В частности, численному моделированию таких процессов

посвящены работы следующих авторов: А.К. Абрамяна [8], М. Аллена [301], И.Ш.

Ахатова [9], Н.М. Бессонова [10], Е.В. Глушкова [12], Н.В. Глушковой [11], М.В.

Голуба, Р.В. Гольштейна [14], С.В. Дмитриева [15], П.В. Захарова [16], Д.А. Ин-
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дейцева [17], А.М. Кривцова [18], С.А. Кукушкина [19], Д.С. Лисовенко [21],

В.П. Матвеенко [22] Ю.И. Мещерякова [23], Н.Ф. Морозова [24, 25], В.П. Мяс-

никова [26], А.А. Назарова [28], О.Б. Наймарка [27] П.Е. Товстика [29], В.М.

Фомина [30, 31], У. Хувера [229] и других. В настоящей работе рассматривается

аналитическое описание нестационарных волновых процессов в рамках дискретных

моделей.

Простейшей дискретной моделью деформируемого твёрдого тела для анали-

тического описания нестационарных волновых процессов является одномерная

решётка (цепочка), состоящая из одинаковых материальных точек (частиц), соеди-

нённых линейными пружинками. Вероятно, первый, кем решена задача динамики

данной цепочки, был У. Гамильтон [3]. Динамика той же модели привлекала вни-

мание множества авторов; к числу наиболее ранних её исследователей относятся

М. Коппер [4], Т. Хавелок [5], Э. Шрёдингер [110], М. Борн, Т. Карман [6], Н.Е.

Жуковский [166], Е. Гильемин [168], Л. Пайпс1 [169], Л. Бриллюэн [34], Л.И. Ман-

дельштам [167] и П. Хеммер [112]. Теория динамики линейных кристаллических

решёток представлена в работах А. Аскара [36], М. Борна [37], Л. Бриллюэна [34],

Дж. Вейсса [35], Дж. Займана [33], И.П. Ипатовой [35], А.М. Косевича, Х.Куня [37],

А. Марадудина [35], Э. Монтролла [35] и П. Хеммера [112]. Нелинейным задачам

с применением дискретных моделей посвящены работы, в частности, М. Аблови-

ца [38], С.А. Беклемишева [174], О.В. Гендельмана [203], Б. Гершгорина [217, 218],

Е.Ф. Грековой [290], Т. Доксуа [39], Ф. Генье [186], Е.А. Ивановой [40], Е.А. Корз-

никовой [41], А.М. Косевичa [178], Ю.А. Косевичa [42], М.А. Ковалёвой [43],

Л.И. Маневича [44], А.И. Мелькера [171], М. Милке [45], Э. Монтролла [46], А.А.

Овчинникова [176], Дж. Паста [204], В.А. Полянского [48], А.В. Порубова [291],

А.В. Савина [47], Р.Х. Сабирова [172], Л.И. Слепяна [49], М. Тоды [50], Д.В.

Трещёва [51], С. Улама [204], Э. Ферми [204], Г. Флаха [177], М. Цингу [204], Р.

Хомерики [189] и других авторов. В диссертационной работе основное внима-

ние уделяется процессам переноса и перераспределения энергии в дискретных

1Гильемин и Пайпс рассматривали модель цепочки в рамках электродинамики.
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средах с учётом граничных условий и нелинейных эффектов. Переносу энергии

в дискретных средах посвящены многие работы, в частности, П. Аллена [128],

Ю.А. Баимовой [52, 53], Дж. Волфе [75], С.Н. Гаврилова [130, 131, 132, 133],

О.В. Гендельмана [54],М.В. Голуба [56], М.А. Гузева [115, 117], Р. Гуера [55], С.В.

Дмитриева [181, 16, 300], А. Дхара [97, 102], А.И. Жмакина [57], Д. Кахиля [58], М.

Клейна [109], А.М. Кривцова [207, 226, 294], В.А. Кузькина [304, 293, 108, 278, 279],

И.А. Кунина [7], Дж. Лебовица [100, 101], С. Лепри [96], Я. Луккаринена [99], В.

Мюллера [107], А. Полити [98], И. Пригожина [109], Р.Рубина [59], Ч. Тяня [60], Г.

Чена [84], Д. Чена [61], Е.В. Шишкиной [134, 209, 135], Х. Шпона [62] и других

авторов. В работах данных авторов основное внимание уделяется бесконечным

линейным кристаллическим решёткам. В настоящей работе делается акцент на

исследовании влияния граничных условий (свободных, кинематических, силовых)

и нелинейных эффектов на перенос энергии.

Наряду с переносом энергии в дискретных средах регулярно исследуют-

ся процессы, происходящие вдали от теплового равновесия, в которых имеет

место перераспределение энергии по степеням свободы. Описание данного процес-

са подразумевает введение нескольких температур, им соответствующим. Мно-

готемпературным моделям механики деформируемых твёрдых тел посвящены

работы, в частности, С. И. Анисимова [230, 234], А.К. Беляева [268], М. Гарти-

на [259, 260, 261], Д. Жоу, Д.А. Индейцева [267, 268, 236], Р. Ковача [248], А.М.

Кривцова [277], Дж. Лебовица [282], Ю.В. Петрова [240], С.Л. Соболева [264, 239],

У. Хувера [231, 232, 272] и других авторов. В настоящей работе исследуются

естественно возникающие вопросы, касающиеся перехода к равновесию, вызван-

ного прекращением внешнего воздействия и сопровождающимся выравниванием

энергий (характерный масштаб времени выравнивания кинетических энергий, со-

ответствующих различным степеням свободы; необходимая степень нелинейности

для выравнивания энергий; наблюдение нескольких различных энергий в ходе

нестационарного переноса энергии).

Таким образом, влияние граничных условий и нелинейных эффектов на
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перенос и перераспределение энергии в дискретных средах к настоящему времени

представляется недостаточно изученным.

Цели и задачи
Целью настоящей работы является анализ влияния граничных условий и

нелинейных эффектов на перенос и перераспределение энергии в дискретных сре-

дах на примере одномерных цепочек и гранецентрированной кубической решётки.

Для достижения этой цели решаются следующие задачи:

1. Нахождение аналитического решения, описывающего перенос энергии в по-

лубесконечной линейной цепочке со свободной границей в континуальном

приближении как при начальном распределении энергии, так и при внезапном

подводе энергии;

2. Решение нестационарной задачи динамики линейной цепочки при силовом

граничном условии, заданном периодической внешней силой;

3. Вывод выражений для полной энергии, закачиваемой в цепочку при силовом и

кинематическом граничных условиях, с учётом влияния нелинейности;

4. Исследование влияния нелинейности на перераспределение энергии между

степенями свободы в цепочкемасса-в-массе и гранецентрированной кубической

решётке.

Методология и методы исследования
Для аналитического решения задач динамики полубесконечных цепочек при

наличии свободной границы и при силовых граничных условиях использовалось

дискретное косинус-преобразование. Для упрощения и анализа полученных ана-

литических решений применялись асимптотические методы, в частности, метод

стационарной фазы. Для численного решения уравнений динамики использовались

симплектические методы интегрирования.
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Научная новизна
1. Получено аналитическое решение, описывающее перенос энергии упругими

волнами в полубесконечной линейной цепочке со свободной границей при

стохастическом воздействии в континуальном приближении. Показано, что

при воздействии в виде белого шума математическое ожидание кинетической

энергии частиц вблизи границы изменяется во времени иначе, чем частиц

вдали от границы.

2. Получено приближённое нестационарное решение задачи динамики полубеско-

нечной линейной цепочки при наличии силового граничного условия, заданного

периодической внешней силой. Впервые показано, что силовое нагружение

на границе на максимальной частоте в полосе пропускания не приводит к

росту амплитуды колебаний частиц вблизи границы (в отличие от бесконечной

цепочки, в которой рост наблюдается для всех частиц).

3. Впервые получены приближённые формулы для полной энергии, закачиваемой

в слабонелинейную полубесконечную цепочку при силовом и кинематическом

граничных условиях на больших временах, в том числе при нагружении на

частоте в полосе непропускания линейной цепочки. Показано, что нелиней-

ность и кинематическое граничное условие приводят к увеличению частоты

нагружения, при которой скорость закачки энергии имеет максимум.

4. Впервые показано, что в процессе переноса энергии в цепочке масса-в-массе

кинетические энергии, соответствующие цепочке и прикреплённым осцилля-

торам, могут различаться как при слабой, так и при сильной нелинейности.

5. Получена формула, аппроксимирующая зависимость масштаба времени вырав-

нивания кинетических энергий, соответствующих различным пространствен-

ным направлениям, от начальной энергии в нелинейной гранецентрированной

кубической решётке.
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Теоретическая и практическая значимость диссертации
Диссертация носит теоретический характер. Представленные в ней результа-

ты могут быть использованы для построения моделей, описывающих эксперименты

по переносу энергии в кристаллических твёрдых телах на микро- и наноуровне, в

частности, для теоретического описания нестационарного эксперимента на основе

метода transient thermal grating (TTG). Результаты также могут способствовать раз-

витию теории переноса тепловой энергии на наноуровне (и устройств для контроля

данного процесса: тепловые диоды и транзисторы), в частности, при решении задач,

связанных с отводом тепловой энергии от различных нано- и микропроцессорных

устройств.

Результаты главы 1 дают представление о влиянии свободной границы на

перенос энергии в кристаллических твёрдых телах. Результаты, представленные в

главе для одномерных задач, могут быть обобщены на задачи переноса энергии в

плоских и пространственных решётках со свободной (или нагруженной) поверхно-

стью или с интерфейсом. Результаты главы 2 направлены на развитие теоретических

подходов как к решению задачи динамики дискретных сред, находящихся под

воздействием внешних сил (или поля), так и к описанию подвода энергии, вы-

званного внешним воздействием. Результаты, изложенные в главах 1 и 2, могут

быть также использованы для совершенствования моделей динамики технических

систем (бурильных колонн, валопроводов, подвижного состава) или строительных

систем (стержневых конструкций) посредством установления аналогий между ними

и дискретными моделями. Результаты главы 3 могут быть использованы для по-

строения определяющих соотношений в механике многокомпонентных сплошных

сред или метаматериалов, находящихся в неравновесных условиях.

Положения, выносимые на защиту
1. В полубесконечной линейной цепочке со свободной границей любое начальное

распределение кинетической энергии затухает вблизи границы на больших

временах быстрее, чем в бесконечной цепочке.
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2. В полубесконечной линейной цепочке со свободной границей при отсутствии

трения и стохастическом воздействии в виде белого шума математическое

ожидание кинетической энергии для частиц вблизи границы на больших

временах стремится к константе, а вдали от границы — неограниченно растёт

(в отличие от бесконечной цепочки, в которой энергии всех частиц растут).

3. В полубесконечной линейной цепочке при силовом граничном условии, за-

данном периодической внешней силой с частотой, соответствующей нулевой

групповой скорости, рост амплитуды колебаний частиц вблизи границы не

наблюдается (в отличие от бесконечной цепочки, в которой рост наблюдается

для всех частиц).

4. Приближённые выражения для полной энергии, закачиваемой в слабонели-

нейную полубесконечную цепочку при силовом и кинематическом граничных

условиях на больших временах, в том числе при нагружении на частоте в полосе

непропускания линейной цепочки.

5. В нелинейной цепочке масса-в-массе равные в начальный момент времени

кинетические энергии, соответствующие цепочке и прикреплённым осцилля-

торам, различны в процессе затухания, как при слабой, так и при сильной

нелинейности.

6. Колебания средней кинетической энергии в линейной гранецентрированной

кубической решётке имеют шесть основных частот, а амплитуда колебаний

затухает обратно пропорционально времени.

7. Формула, аппроксимирующая зависимость масштаба времени выравнивания

кинетических энергий, соответствующих различным пространственным направ-

лениям, от начальной энергии в нелинейной гранецентрированной кубической

решётке.
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Достоверность
Достоверность результатов, представленных в диссертации, обеспечивается

строгой математической постановкой задач, применением математически обосно-

ванных методов решения, совпадением аналитических результатов с результатами

численного моделирования, а также сопоставлением некоторых из полученных

результатов с ранее опубликованными в литературе.

Апробация работы
Результаты работы представлялись на ежегодных школах-конференциях

«Актуальные проблемы механики» (Санкт-Петербург, 2019—2022; Великий Нов-

город, 2024); конференциях «Неделя науки СПбПУ» (Санкт-Петербург, 2018,

2019), «Неделя науки ФизМех» (Санкт-Петербург, 2022—2024); семинаре научно-

го центра «Корнинг» в 2021 г. (руководитель семинара — А.В. Доценко); XXXVII

Фортовской ежегодной международной конференции «Уравнения состояния веще-

ства» (Эльбрус, 2022); Санкт-Петербургском городском семинаре по механике в

2022 г. (руководитель семинара — чл.-корр. РАН Д.А. Индейцев); V Всероссийской

конференции молодых учёных механиков «YSM-2022» (Сочи, 2022); VI Междуна-

родной конференции «Моделирование нелинейных процессов и систем (MNPS —

2022)» (Москва, 2022); конференции «NODYCON 2023» (Рим, 2023); XIII Всерос-

сийском съезде по теоретической и прикладной механике (Санкт-Петербург, 2023);

XXXIII Всероссийской конференции «Математическое моделирование в естествен-

ных науках» (Пермь, 2024); XI Всероссийском молодёжном научном форуме с

международным участием «OpenScience» (Гатчина, 2024). В полном объёме ре-

зультаты диссертации представлялись на семинарах по механике, основанном Д.А.

Индейцевым (руководитель семинаров — А.Б. Фрейдин); акустическом семинаре

имени Д.П. Коузова (руководитель семинара — А.П. Киселёв); семинарах Высшей

школы теоретической механики и математической физики СПбПУ (руководитель

семинаров — чл.-корр. РАН А.М. Кривцов); семинаре математико-механического

факультета СПбГУ (руководитель семинара — академик РАН Ю.В. Петров).
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На различных этапах диссертационная работа поддерживалась грантами

РФФИ (20-37-70058), РНФ (21-71-10129, 22-11-00338) и грантом 23-1-5-112-1

Фонда развития теоретической физики и математики «БАЗИС».

Полнота изложения материала
Основные результаты диссертационной работы опубликованы в 5 рабо-

тах [196, 195, 136, 286, 285]. Все результаты опубликованы в изданиях, входящих

в базы цитирования WoS/Scopus, РИНЦ или изданиях, рекомендованных ВАК

России.

Личное участие автора
Автору принадлежат решения задач, приведённые в главе 1, главе 2 (ре-

зультаты, приведённые в разделе 2.2.2, были получены совместно с соавтором

работы [196]) и главе 3 (результаты, приведённые в разделах 3.2.3 и 3.2.4, были

получены совместно с соавтором работы [285]). При нахождении асимпотического

приближения решений задач, приведённых в разделе 1.1.4 главы 1 и разделах 2.1.3,

2.1.4, 2.2.2 главы 2, использовались подходы из работ [108, 192, 133, 135]; в главе 3

аналитические решения задач были получены на основе формул, выведенных в

работах [278, 279].

Структура и объём диссертации
Диссертация изложена на 209 страницах (основной текст занимает 172

страницы) и состоит из введения, трёх глав, заключения и списка литературы.

Диссертация содержит 54 рисунка. Библиография включает 311 наименований.
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Основные обозначения
В диссертации используются следующие обозначения:

N— множество натуральных чисел;

H —функция Хевисайда;

i— мнимая единица;

c.c.— комплексно-сопряжённое слагаемое;

ℜ и ℑ— вещественная и мнимая части соответственно;

Γ— гамма-функция;

Tk — полином Чебышева первого рода степени k;

δ — дельта-функция Дирака;

δk,k′ — символ Кронекера;

J —функция Бесселя первого рода;

K — модифицированная функция Бесселя второго рода;
˙(...) и ¨(...) — производные по времени первого и второго порядка соответственно;

t— время;

⊤— символ транспонирования;

⟨...⟩— символ математического ожидания;

a— длина связи между частицами в недеформированном состоянии.
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Глава 1. Перенос энергии в полубесконечной линейной цепочке

со свободной границей

Введение
Известно, что задачи термомеханики деформируемого твёрдого тела на

макроуровне могут быть эффективно поставлены и решены с помощью теории

линейной термоупругости. В частности, постановка термодинамической состав-

ляющей таких задач предполагает применение закона Фурье, согласно которому

перенос тепловой энергии является диффузионным. Однако, эксперименты по-

следних десятилетий подтверждают, что на микро- и нано уровне перенос тепловой

энергии может иметь волновую природу. В таких материалах, как графит [295],

силиконовые нанопроволоки [67], графен [63], силиконовые мембраны [65], нано-

трубки [66], плёнки сверхвысокомолекулярного полиэтилена и пр., коэффициент

теплопроводности зависит от размера образца, что подтверждает нарушение за-

кона Фурье. В частности, в работах [69, 70, 71] показано, что коэффициент

теплопроводности прямо пропорционален размеру образца. Данная зависимость

соответствует баллистическому режиму теплопроводности, ассоциируемому с

движением невзаимодействующих фононов. Этот режим теплопроводности связан

с распространением упругих волн в твердых телах, в частности в диэлектриках, где

упругие волны являются основным носителем тепловой энергии, что подтверждают,

в частности, эксперименты [90, 91, 72, 73, 74, 76]. Таким образом, возникает необ-

ходимость в разработке теоретических моделей, описывающих перенос тепловой

энергии волнового характера в деформируемых твёрдых телах.

Существуют множество основных подходов к теоретическому описанию

волнового переноса тепловой энергии, обзор которых представлен, в частности,

в работах [83, 84]. Одними из наиболее популярных среди феноменологических

подходов заключаются либо в использовании гиперболического уравнения Макс-

велла–Каттанео–Вернотте (МКВ) [85, 86, 87]; либо — в рамках уравнений теории
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фононной гидродинамики [81], согласно которой тепловая энергия может рас-

пространяться волнами второго звука [82]. Оба подхода считаются более обосно-

ванными физически для описания процессов теплопроводности, протекающих в

волновом режиме, поскольку, в отличие от параболического уравнения теплопро-

водности Фурье, они предполагают конечную скорость распространения тепла. С

другой стороны, уравнение МКВ опирается на предположение о незначительном

отклонении от теплового равновесия [88], которое нарушается либо в условиях

существенного неравновесия, либо на масштабах, сопоставимых с длиной сво-

бодного пробега фононов (или меньших). По тем же причинам ограничивается

применимостью теория фононной гидродинамики (хотя, стоит отметить, данная

теория с точностью может описывать ряд экспериментов, связанных с волновым пе-

реносом тепловой энергии, в частности, [89, 90, 92]). Кроме того, гиперболическое

уравнение теплопроводности предсказывает экспоненциальное затухание тепловых

возмущений, однако при баллистическом режиме эти возмущения затухают по

степенному закону [279].

Среди теоретических подходов к описанию волнового переноса тепловой

энергии также известны два направления: кинетический подход, основанный на

исследовании уравнения Больцмана [245, 246, 99] или постановка и исследова-

ние дискретной задачи стохастических уравнений динамики решётки. Анализ

кинетического уравнения Больцмана позволяет решать задачи, неразрешимые с

помощью метода динамики решётки. Поскольку уравнение Больцмана является

континуальным уравнением (относительно функций континуальных простран-

ственных переменных), величины, полученные через решение этого уравнения,

меняются в пространстве континуальным образом. Следовательно, возникает во-

прос о существовании определённых ограничений описания переноса тепловой

энергии на наноуровне, связанных с дискретной структурой среды. Что касается

теории динамики решётки, в литературе регулярно рассматриваются как стаци-

онарные, так и нестационарные задачи переноса тепловой энергии. Например,

популярный способ ответить на вопрос о характере переноса тепла заключается в



17

оценке стационарного профиля температуры, например, в цепочке, ограниченной

тепловыми резервуарами. Возможно, первыми это сделали Ридер и Лебовиц в

работе [100], где показали, что профиль температуры в цепочке с двумя тепловы-

ми резервуарами не изменяется внутри цепочки за исключением её концов (что

явно противоречит закону Фурье). Аналогичного типа задача рассматривается во

множестве работ. В частности, исследуются влияние неупорядоченности [101],

межатомных столкновений [98], пространственной неоднородности [125], магнит-

ных полей [102, 103]. Несмотря на то, что стационарная формулировка задачи

переноса энергии позволяет получить множество убедительных результатов, она

обладает рядом существенных недостатков. Во-первых, в стационарной постанов-

ке нельзя определить закон распространения тепла, позволяющий, в частности,

получить корректное решение задачи термоупругости. Во-вторых, стационарная

постановка не позволяет описать переходный к равновесию процесс, например, при

существенно неравновесных условия [93]. Следовательно, для всестороннего ана-

лиза распространения энергии и учёта особенностей этого процесса целесообразно

рассматривать задачи в нестационарной постановке.

В работе [108] кинетическая теория нестационарного переноса тепловой

энергии в бесконечной одномерной гармонической цепочке связана с теорией

динамики решётки. Приближенное решение для кинетической энергии выводит-

ся в континуальном пределе с использованием дискретного (точного) решения,

полученного с помощью подхода через теорию динамики решётки. Показано,

что результат идеально согласуется кинетической теорией. Тем не менее, вопрос

остаётся открытым: всегда ли континуальное решение, полученное тем или иным

методом, будет так же качественно описывать процесс переноса энергии, как и

точное решение?

В общем случае можно выделить дискретное и континуальное аналитические

описания баллистического переноса энергии. В пионерской работе Клейна и При-

гожина [109] был получен закон эволюции дискретного поля кинетической энергии

с использованием точного решения Шрёдингера [110] уравнений динамики для



18

цепочки Гука1. Результат был воспроизведен Хеммером в его диссертации [112].

В работе Кривцова [294] решение, описывающее перенос энергии при произволь-

ном начальном её распределении в континуальном приближении в цепочке Гука

предложено в интегральной форме. Этот результат был переполучен в работе [128]

для случая точечного начального распределения энергии (то есть, получено фунда-

ментальное решение). В работах [113, 133] производится сравнение дискретного

и континуального описаний переноса энергии. Однако, вышеприведенные резуль-

таты касаются распространения энергии только в бесконечных цепочках. Вопрос,

касающийся влияния граничных условий на перенос энергии в цепочках и решёт-

ках , остаётся открытым хотя бы потому, что, во-первых, на границе проводится

измерение или подаётся возмущение; во-вторых, взаимодействие волн с границами

(например, отражение) сказывается на изменении измеряемых величин. Ответ на

вышеупомянутый вопрос, связанный, например, со свободной границей, необходим,

например, для разработки теоретических моделей экспериментов, описанных, в

частности, в [75, 79, 76, 123].

Некоторые аналитические трактовки описания переноса энергии в решётках

при наличии границ предложены в работах [119, 115, 120, 121]. В работе М.А.

Гузева [115] получено решение задачи переноса энергии а конечной (состоящей

из конечного числа частиц) цепочке Гука, в работе [120] — в полубесконечной

цепочке с поглощающей границей, в работе [121] — в полубесконечной цепочке

с закреплённым концом. Несмотря на полученные результаты, остаются неясно-

сти, касающиеся, например, поведения величин на границе или влияние других

граничных условий на перенос энергии.

В настоящей главе рассматриваются две задачи, разрешаемые соответственно

в параграфах 1.1 и 1.2. Первая задача, рассмотренная в параграфе 1.1, связана

с переносом энергии в полубесконечной цепочке Гука при произвольном началь-

ном распределении энергии. Данная задача сводится к формулировке системы

1Термин «цепочка Гука» был введён А.М. Кривцовым в работе [226] для обозначения линейной моноатомной
цепочки и будет использоваться в диссертации.
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бесконечного числа уравнений движения частиц со стохастическими начальными

условиями. Первый подход заключается в использовании ковариаций скоростей,

перемещений и сведении к детерминированной системе обыкновенных дифферен-

циальных уравнений относительно этих ковариаций. Такой подход рассматрива-

ется в [292, 294, 279, 108, 130, 131, 98]. Например, в работах [96, 98] уравнения

для ковариаций выводятся через интегрирование уравнения Фоккера-Планка-

Колмогорова (см. [152]), записывающееся для плотности распределения фазового

пространства соответствующей модели. В работах [292, 130, 131] проводится

дифференцирование ковариаций с использованием уравнений динамики. Второй

подход, заключающийся в использовании точной формулы для скоростей частиц,

рассмотрен как для однородных [109, 112, 108, 115], так и для неоднородных

цепочек [134, 135], а также для многомерных решёток [279]. Для решения задачи,

приведённой в разделе 1.2, используется этот же подход. Вторая задача, рассмот-

ренная в разделе 1.2, связана с переносом энергии в полубесконечной цепочке,

вызванным стохастическим подводом энергии. Постановка задачи представляет

собой систему уравнений Ланжевена (уравнением такого типа описывается, напри-

мер, Броуновское движение частиц) с некоррелированным шумом. Как правило,

подобная постановка задачи приводится зачастую для систем с тепловыми резер-

вуарами (термостатами) [125, 126, 129, 117, 118], то есть шум задаётся только

на концах цепочки. Здесь же приводится обобщение стохастических уравнений

для случая, когда шум может быть в произвольных частицах и в произвольных их

количествах. Такая постановка задачи уже использовалась в работах [130, 131, 132]

для бесконечных цепочек и решёток, в перенос энергии описан аналитически

в континуальном пределе. Здесь подобная постановка задачи используется для

полубесконечной цепочки, перенос энергии в которой описывается через решение

задачи нахождения поля кинетической энергии как в дискретной форме, так и в

континуальном приближении.

Результаты главы опубликованы в работах [136, 137].
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1.1 Перенос энергии в полубесконейной цепочке при заданном

начальном распределении энергии
1.1.1 Постановка задачи

В настоящем параграфе используется следующая модель деформируемого

твердого тела: цепочка Гука, состоящая из одинаковых частиц массойm, соеди-

нённых линейными пружинками жёсткостью c и имеющая один свободный конец.

Правый конец цепочки удалён на бесконечность (см. рисунок 1.1). Будем считать,

m m m m m

c c c c

0 1 2 3 4

Рис. 1.1: Полубесконечная цепочка со свободной границей.

что частицы взаимодействуют только с ближайшими соседями. Тогда уравнение

движения частицы n можно записать в виде:

u̇n = vn,

mv̇0 = ω2
e(u1 − u0),

mv̇n = ω2
e(un+1 − 2un + un−1), n ∈ N.

(1.1)

где un, vn — перемещение и скорость частицы номера n соответственно. Два

последних уравнения в (1.1) можно записать в альтернативной форме для n ∈

N ∪ {0}:

v̇n = ω2
e(un+1 − un)− ω2

e(un − un−1)(1− δn,0), ωe
def
=
√
c/m. (1.2)

Предположим, что в начальный момент времени в цепочке отсутствуют

потоки энергии, и задано некоторое распределение кинетической энергии. Тогда
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начальные условия таковы2:

un = 0, vn = vn, (1.3)

Здесь vn — начальная скорость частицы, такая, что

vn = ρn

√
2T 0

n

m
, (1.4)

где T 0
n — начальная кинетическая энергия частицы (см. определение (1.28)); ρn

— некоррелированные случайные числа с нулевым математическим ожиданием и

единичной дисперсией:

⟨ρn⟩ = 0, ⟨ρnρn′⟩ = δn,n′, (1.5)

где ⟨...⟩— математическое ожидание. Вышесформулированные начальные условия

соответствуют начальному мгновенному возмущению, которое может быть реа-

лизовано воздействием ультракороткого лазерного импульса в экспериментах с

фемтосекундным [138] и аттосекундным [139, 140] лазерами).

1.1.2 Точное выражение для скоростей частиц

Решение задачи динамики цепочки: уравнение (1.1) с начальными условия-

ми (1.3) будем находить следующим образом. Рассмотрим вспомогательную задачу:

дана та же цепочка, состоящая изN частиц и имеющая два свободных конца. Стоит

отметить, в частности, что данная цепочка используется в работе [141] как модель

валопровода. Запишем уравнения динамики:

ün = ω2
e(un+1 − 2un + un−1), n = 1, ..., N − 2, (1.6)

ü0 = ω2
e(u1 − u0), üN−1 = ω2

e(uN−2 − uN−1). (1.7)

2Поскольку выражение для потока энергии определяется через ковариации перемещений и скоростей (см., в
частности, [294, 225]), нулевым потокам энергии соответствуют нулевые начальные перемещения.
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Добавим в цепочку частицы с индексами −1 и N , такие, что

u−1 = u0, uN = uN−1. (1.8)

Выполнение уравнений (1.7) гарантирует удовлетворение граничным условиям (1.8).

Для того чтобы найти решение уравнений (1.6) с граничными условиями (1.8) и

начальными условиями (1.3), применим метод разложения по собственным формам.

Будем искать решение вышепоставленной задачи в виде

un = Aeiωt cos (θn+ α0), (1.9)

где θ — волновое число; A и α0 — константы. Подстановка (1.9) в граничные

условия (1.8) соответственно даёт:

α0 =
θ

2
, θ =

πk

N
, k = 0, ..., N − 1. (1.10)

Подстановка (1.9) в уравнения динамики (1.6) даёт спектр собственных частот для

цепочки:

ωk = 2ωe

∣∣∣ sin πk
2N

∣∣∣. (1.11)

Таким образом, решение системы (1.6—1.7) можно записать в виде

un =
N−1∑
k=1

(Ake
iωkt + c.c.) cos

(2n+ 1)πk

2N
+ C0t+ C−1. (1.12)

Последние два слагаемых появляются из-за гармоники с нулевой частотой, соот-

ветствующей движению цепочки как абсолютно твёрдого тела. Для нахождения

констант Ak воспользуемся начальными условиями (1.3), откуда

vn = C0− 2
N−1∑
k=1

ℑ(Ak)ωk cos
(2n+ 1)πk

2N
, 0 = C−1+2

N−1∑
k=1

ℜ(Ak) cos
(2n+ 1)πk

2N
.

(1.13)
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Преобразуя (1.13) с использованием равенства (условия ортогональности собствен-

ных форм)

N−1∑
n=0

cos
(2n+ 1)πk

2N
cos

(2n+ 1)πk′

2N
=
N

2
(1 + δk,0)δk′,k, (1.14)

получим

ℑ(Ak)ωk = C0δk,0 −
1

N

N−1∑
n=0

vn cos
(2n+ 1)πk

2N
, ℜ(Ak) = −C−1δk,0. (1.15)

Следовательно,

C0 =
1

N

N−1∑
n=0

vn, ℜ(Ak) = C−1 = 0, ℑ(Ak) =
1

Nωk

N−1∑
n=0

vn cos
(2n+ 1)πk

2N
.

(1.16)

Таким образом, окончательное выражение для перемещений частиц имеет вид:

un =
2

N

N−1∑
j=0

vj

N−1∑
k=1

cos
(2j + 1)πk

2N
cos

(2n+ 1)πk

2N

sin(ωkt)

ωk
+

t

N

N−1∑
j=0

vj

=
2

N

N−1∑
j=0

vj

N−1∑
k=0

cos
(2j + 1)πk

2N
cos

(2n+ 1)πk

2N

sin(ωkt)

ωk
− t

N

N−1∑
j=0

vj,

(1.17)

а,значит, скорость частицы выражается как

vn =
2

N

N−1∑
j=0

vj

N−1∑
k=0

cos
(2j + 1)πk

2N
cos

(2n+ 1)πk

2N
cos(ωkt)−

1

N

N−1∑
j=0

vj. (1.18)

Таким образом, получено точное выражение для скорости каждой частицы в

цепочке с двумя свободными концами при начальном распределении скоростей

частиц. В скорость частицы n каждая частица с ненулевой начальной скоростью

вносит вклад, представляющий собой суперпозицию N − 1 гармонических волн с

частотой ωk, а также вклад от гармоники с нулевой частотой.

Перейдём к пределуN → ∞, удалив правый конец цепочки на бесконечность.
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Тогда второе слагаемое в (1.18) можно опустить, и дискретное волновое число,πk/N ,

заменить на непрерывно меняющееся волновое число θ ∈ [0; π]. Следовательно,

сумму по k в (1.18) можно заменить интегралом по симметричному отрезку

относительно нуля. Таким образом, выражение для скорости частицы имеет вид

vn =
1

π

∞∑
j=0

vj

∫ π

−π

cos
(2j + 1)θ

2
cos

(2n+ 1)θ

2
cos(ω(θ)t)dθ, (1.19)

где ω(θ)— дисперсионное соотношение для цепочки Гука, определяемое как

ω(θ)
def
= 2ωe

∣∣∣ sin θ
2

∣∣∣. (1.20)

Задачу (1.2—1.3) можно решить другим способом. Введём прямое дискретное

преобразование3, записанное в виде:

û(θ) =
∞∑
n=0

un cos
(2n+ 1)θ

2
. (1.21)

Тогда обратное дискретное косинус-преобразование будет иметь следующий вид:

un =
1

π

∫ π

−π

û(θ) cos
(2n+ 1)θ

2
dθ, (1.22)

где û—неизвестнаяфункция времени (будемназывать её образомперемещения или

другой функции, для которой применяется прямое дискретное преобразование).

Покажем, что одновременное применение преобразований (1.21) и (1.22) даёт

тождественное преобразование. В самом деле,

1

π

∫ π

−π

∞∑
n′=0

un′ cos
(2n+ 1)θ

2
cos

(2n′ + 1)θ

2
dθ

=
1

π

∞∑
n′=0

un′

∫ π

−π

cos
(2n+ 1)θ

2
cos

(2n′ + 1)θ

2
dθ =

∞∑
n′=0

un′δn,n′ = un.

(1.23)

3Термин «дискретное косинус-преобразование» впервые вводится в работе [124].
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Здесь использовано следующее тождество:

∫ π

−π

cos
(2n+ 1)θ

2
cos

(2n′ + 1)θ

2
dθ = πδn,n′. (1.24)

Применяя прямое дискретное косинус-преобразование к уравнению (1.2), получим

следующее уравнение относительно û:

¨̂u+ ω2û = 0. (1.25)

Применение того же преобразования к начальным условиям (1.3) даёт

û|t=0 = 0, ˙̂u|t=0 =
∞∑
n=0

vn cos
(2n+ 1)θ

2
. (1.26)

Решение задачи Коши (1.25— 1.26) имеет вид

û =
sin (ωt)

ω

∞∑
n=0

vn cos
(2n+ 1)θ

2
. (1.27)

Применяя обратное дискретное косинус-преобразование к ˙̂u, получим выраже-

ние (1.19).

Таким образом, с помощью прямого и обратного дискретных косинус-

преобразований (1.21—1.22) можно решить задачу динамики полубесконечной

цепочки Гука со свободной границей, не переходя к искомому решению в пределе

от конечной цепочки. В дальнейшем формула (1.19) будет использована при выводе

выражения для кинетической энергии.

1.1.3 Точное выражение для кинетической энергии

Рассмотрим бесконечное множество реализаций, различающихся начальными

скоростями (1.4). Для цепочки Гука, на элементарную ячейку которой приходит-

ся одна частица, процессы переноса энергии будем описывать математическим

ожиданием кинетической энергии частицы, T (в дальнейшем эта величина будет
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называться просто кинетической энергией):

2Tn
def
= m⟨v2n⟩. (1.28)

Подставляя решение для скорости частицы (1.19) в (1.28) с использованием

формулы (1.4) и свойством некоррелированности случайных чисел (1.5), получим:

Tn =
1

π2

∞∑
j=0

T 0
j

(∫ π

−π

cos
(2j + 1)θ

2
cos

(2n+ 1)θ

2
cos(ω(θ)t)dθ

)2

. (1.29)

Выражение (1.29) — точное решение для кинетической энергии в полубесконечной

цепочке со свободным концом, которое в дальнейшем будет именоваться дискрет-

ным решением. Формула (1.29) показывает, что каждая частица, возмущённая в

начальный момент времени, вносит вклад в кинетическую энергию в точке n.

Отметим, что решение для кинетической энергии в бесконечной цепочке, T inf
n ,

имеет вид [109, 113]

T inf
n =

∞∑
j=−∞

T 0
j J

2
2(n−j)(2ωet), (1.30)

где J — функция Бесселя первого рода. Сопоставляя уравнения (1.29) и (1.30),

можно прийти к выводу, что для цепочки Гука с произвольными граничными

условиями решение для кинетической энергии можно построить следующим

образом:

Tn =
∑
j∈P

T 0
j Φ̇

2
n,j(t), (1.31)

где P — множество чисел, индексирующих частицы, подверженные возмущению;

функция Φ̇n,j — решение уравнения

Φ̈n = ω2
eLnΦn + δn,jδ(t), (1.32)

с начальным условием [142]

Φn|t<0 = 0, (1.33)
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то есть, фундаментальное решение. Здесь Ln — линейный разностный оператор,

зависящий от конкретных граничных условий.

1.1.4 Кинетическая энергия в континуальном пределе

Далее формула (1.29) используется для вывода выражения для кинетической

энергии в континуальном пределе, представляющего собой функцию простран-

ственной координаты x. Построение континуального решения проводится по трём

причинам. Во-первых, континуальное решение позволяет упростить решение для

кинетической энергии, поскольку дискретное решение даже в одномерном случае

может являться громоздким и затруднительным для анализа. Во-вторых, контину-

альное решение позволяет физически интерпретировать процесс переноса энергии.

В-третьих, с помощью континуального решения можно провести параллель между

(микро-)наноскопическим и макроскопическим описаниями процессов переноса

энергии. Ниже предлагаются два способа континуализации дискретного решения

для кинетической энергии, полученного через точное решение для скоростей

частиц. Возможно, третьим способом континуализации является представление

решения (1.29) в квазиконтинууме по Кунину [7]. Идея квазиконтинуального

описания решения задачи динамики цепочки Гука заключается в том, чтобы уста-

новить соответствие между дискретной и континуальной функциями решения

задачи динамики, интерполируя последнюю через дискретную свёртку решения

Шрёдингера [110] и кардинального синуса (sinc) уже от континуальной координаты.

Такой тип решения позволяет построить континуальное решение с учётом влияния

коротких волн, а, значит, провести качественную континуализацию решения задач

переноса энергии в бесконечных решётках (в частности, в бесконечной цепочке

Гука [116]). Однако, постановка граничного условия приводит к интегрально-

му уравнению относительно интерполируемой функции, что может привести к

техническим сложностям.
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Континуализация. Первый способ

Для вывода континуального решения используется подход, предложенный в

работе [108]. Раскроем квадрат в формуле (1.29), применяя правило произведения

интегралов, и, используя свойство произведения косинусов, разделим результат на

два слагаемых, которые отвечают за два различных процесса:

Tn = T F
n + T S

n ,

T F
n =

∞∑
j=0

T 0
j Fn,j, T S

n =
∞∑
j=0

T 0
j Sn,j,

(1.34)

где Fn,j и Sn,j представляются как

Fn,j =
1

2π2

∫∫ π

−π

cos
(2j + 1)θ1

2
cos

(2j + 1)θ2
2

cos
(2n+ 1)θ1

2
×

× cos
(2n+ 1)θ2

2
cos ((ω(θ1) + ω(θ2))t)dθ1dθ2,

Sn,j =
1

2π2

∫∫ π

−π

cos
(2j + 1)θ1

2
cos

(2j + 1)θ2
2

cos
(2n+ 1)θ1

2
×

× cos
(2n+ 1)θ2

2
cos ((ω(θ1)− ω(θ2))t)dθ1dθ2.

(1.35)

Первое слагаемое в выражении (1.34), T F
n , соответствует «быстрому» процессу,

происходящему на временах порядка нескольких периодов колебаний частиц.

Как будет показано далее, это высокочастотные колебания кинетической энергии,

вызванные выравниваем кинетической и потенциальной энергий. Второе слага-

емое, T S
n , соответствует «медленному» процессу, связанному с баллистическим

переносом энергии. Таким образом, быстрый и медленный процессы, а, значит,

слагаемые, им соответствующие, можно рассматривать отдельно. Ниже выводятся

выражения для T F
n и T S

n в континуальном пределе. Рассмотрим для начала T S
n .

Введем некоторый мезомасштаб длиной 2a∆N (a— длина недеформирован-

ной связи между ближайшими частицами, ∆N ≫ 1), который много больше, чем
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масштаб порядка a, но много меньший, чем макромасштаб4 длиныA. Разделим

цепочку на интервалы s, каждый из которых содержит 2∆N частиц (рисунок 1.2),

начинается и заканчивается «промежуточными» узлами js−1 и js соответственно.

Рис. 1.2: Начальное распределение кинетической энергии.

Предположим, что поле начальной кинетической энергии, T 0, медленно ме-

няется в интервале [js−1; js]. Тогда, формулу (1.34) можно приближенно переписать

следующим образом:

T S
n =

∞∑
s=0

js+∆N∑
j=js−∆N+1

T 0
j Sn,j ≈

∞∑
s=0

T 0
js

js+∆N∑
j=js−∆N+1

Sn,j =

2a∆N
∞∑
s=0

T 0
js
gSn,js(∆N), gSn,js(∆N) =

1

2a∆N

js+∆N∑
j=js−∆N+1

Sn,j,

(1.36)

где выражение gSn,js(∆N) определяет вклад узла js в кинетическую энергию части-

цы n. Для удобства, назовем этот вклад дискретным фундаментальным решением,

то есть аналогом континуального фундаментального решения задачи переноса

энергии в полубесконечной цепочке, которое будет определяться далее.

Введем функции начального поля кинетической энергии, T 0(x), «медленной»

её составляющей, T S(x) и континуального фундаментального решения, gSc (x, y),

4Под макромасштабом может подразумеваться длина цепочки, если бы она была конечной.



30

определяемые как

T 0(an) ≡ T 0
n , gSc (x, y) = lim

a∆N
A

→0
gSn,js(∆N),

T S(x) = lim
a∆N
A

→0
T S
n =

∫ ∞

0

T 0(y)gSc (x, y)dy.
(1.37)

Таким образом, зная дискретное фундаментальное решение, можно построить

континуальное фундаментальное решение, а с ним, зная начальное распределение

кинетической энергии — и поле этой величины в любой момент времени.

Формула (1.36) показывает, что дискретное фундаментальное решение полу-

чается из осреднения функции Sn,j , для которой ниже приводится преобразование

по интервалу длиной 2a∆N , соответствующему мезомасштабу. В дальнейшем

выводится асимптотическое приближение для дискретного фундаментального

решения, gSn,js по трем малым параметрам. Первые два из них — это 1
∆N и a∆N

A
, а

третий, как будет показано далее — разность волновых чисел ∆θ = θ1 − θ2.

Раскроем произведение косинусов в формуле (1.35):

Sn,j =
1

16π2

∫∫ π

−π

[
cos((n+ j + 1)(θ1 + θ2)) + cos((n+ j + 1)(θ1 − θ2))+

cos((n− j)(θ1 + θ2)) + cos((n− j)(θ1 − θ2))+

cos

(
(2j + 1)(θ1 + θ2)

2
− (2n+ 1)(θ1 − θ2)

2

)
+

cos

(
(2j + 1)(θ1 + θ2)

2
+

(2n+ 1)(θ1 − θ2)

2

)
+

cos

(
(2n+ 1)(θ1 + θ2)

2
− (2j + 1)(θ1 − θ2)

2

)
+

cos

(
(2n+ 1)(θ1 + θ2)

2
+

(2j + 1)(θ1 − θ2)

2

)]
cos ((ω(θ1)− ω(θ2))t) dθ1dθ2.

(1.38)

Значит, выражение для gSn,js(∆N) можно переписать в виде суммы из восьми
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слагаемых:

gSn,js(∆N) =
1

16π2a

∫∫ π

−π

cos ((ω(θ1)− ω(θ2))t)
8∑

i=1

ϕi(θ1, θ2)dθ1dθ2. (1.39)

Распишем слагаемые ϕi по отдельности:

ϕ1 =
1

2∆N

js+∆N∑
j=js−∆N+1

cos ((n+ j + 1)(θ1 + θ2)) =

1

2∆N
cos
(3(θ1 + θ2)

2
+ (θ1 + θ2)(n+ js)

)sin ((θ1 + θ2)∆N)

sin
(
θ1+θ2

2

) ,

(1.40)

ϕ2 =
1

2∆N

js+∆N∑
j=js−∆N+1

cos ((n+ j + 1)∆θ) =

1

2∆N
cos

((
n+ js +

3

2

)
∆θ

)
sin (∆N∆θ)

sin ∆θ
2

,

(1.41)

ϕ3 =
1

2∆N

js+∆N∑
j=js−∆N+1

cos ((n− j)(θ1 + θ2)) =

1

2∆N
cos

(
(θ1 + θ2)

(
1

2
+ js − n

))
sin ((θ1 + θ2)∆N)

sin
(
θ1+θ2

2

) ,

(1.42)

ϕ4 =
1

2∆N

js+∆N∑
j=js−∆N+1

cos ((n− j)∆θ) =

1

2∆N
cos

(
∆θ

(
1

2
+ js − n

))
sin (∆N∆θ)

sin ∆θ
2

,

(1.43)

ϕ5 =
1

2∆N

js+∆N∑
j=js−∆N+1

cos

(
(2j + 1)(θ1 + θ2)

2
− (2n+ 1)(θ1 − θ2)

2

)
=

=
1

2∆N
cos

(
θ1

(
1

2
+ js − n

)
+ θ2

(
3

2
+ js + n

))
sin ((θ1 + θ2)∆N)

sin
(
θ1+θ2

2

) ,

(1.44)
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ϕ6 =
1

2∆N

js+∆N∑
j=js−∆N+1

cos

(
(2j + 1)(θ1 + θ2)

2
+

(2n+ 1)(θ1 − θ2)

2

)
=

=
1

2∆N
cos

(
θ2

(
1

2
+ js − n

)
+ θ1

(
3

2
+ js + n

))
sin ((θ1 + θ2)∆N)

sin
(
θ1+θ2

2

) ,

(1.45)

ϕ7 =
1

2∆N

js+∆N∑
j=js−∆N+1

cos

(
(2n+ 1)(θ1 + θ2)

2
− (2j + 1)(θ1 − θ2)

2

)
=

=
1

2∆N
cos

(
θ1

(
1

2
+ js − n

)
− θ2

(
3

2
+ js + n

))
sin (∆N∆θ)

sin
(
∆θ
2

) ,

(1.46)

ϕ8 =
1

2∆N

js+∆N∑
j=js−∆N+1

cos

(
(2n+ 1)(θ1 + θ2)

2
+

(2j + 1)(θ1 − θ2)

2

)
=

=
1

2∆N
cos

(
θ2

(
1

2
+ js − n

)
− θ1

(
3

2
+ js + n

))
sin (∆N∆θ)

sin
(
∆θ
2

) .

(1.47)

Перепишем слагаемые ϕi, содержащие разность волновых чисел ∆θ, следую-

щим образом:

ϕ2 =
∆θ

2

[
cos 3∆θ

2

sin ∆θ
2

(cos ((n+ js)∆θ))−
sin 3∆θ

2

sin ∆θ
2

(sin ((n+ js)∆θ))

]
sinc(∆N∆θ),

ϕ4 =
∆θ

2

[
cot

∆θ

2
cos ((n− js)∆θ) + sin ((n− js)∆θ)

]
sinc(∆N∆θ),

ϕ7 =
∆θ

2

[
cos 3∆θ

2

sin ∆θ
2

cos (∆θ(n+ js)− θ1(2n+ 1))−

sin 3∆θ
2

sin ∆θ
2

sin (∆θ(n+ js)− θ1(2n+ 1))

]
sinc(∆N∆θ),

ϕ8 =
∆θ

2

[
cot

∆θ

2
cos (θ1(2n+ 1)−∆θ(n− js))− sin (θ1(2n+ 1)−∆θ(n− js))

]
sinc(∆N∆θ), sinc(x) =

sin x

x
.

(1.48)

Упростим выражения (1.48) дляϕ2, ϕ4, ϕ7 иϕ8, используямалый параметр 1
∆N и свой-

ства кардинального синуса. Поведение функции sinc(∆θ∆N) на отрезке [−π; π]

представлено на рисунке 1.3. В самом деле, при ∆N ≫ 1, sinc(∆θ) быстро стре-
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Рис. 1.3: Зависимость функции sinc(∆θ∆N).

мится к нулю, при ∆θ ̸= 0 и sinc(∆θ) = 1 при ∆θ = 0. Следовательно, основной

вклад в слагаемые ϕi, а значит, и в дискретное фундаментальное решение gSn,js(∆N)

вносят ближайшие волновые числа θ1, θ2. Поскольку величина ∆θ не фигурирует

в слагаемых ϕ1,3,5,6, то, в дальнейшем, можно ими пренебречь. Следовательно, в

пределах ∆θ → 0 и ∆N ≫ 1 имеем

ϕ2 = cos ((n+ js)∆θ)sinc(∆N∆θ) +O

(
1

∆N

)
,

ϕ4 = cos ((n− js)∆θ)sinc(∆N∆θ) +O

(
1

∆N

)
,

ϕ7 = cos(θ1(2n+ 1)− (n+ js)∆θ)sinc(∆N∆θ) +O

(
1

∆N

)
,

ϕ8 = cos(θ1(2n+ 1)− (n− js)∆θ)sinc(∆N∆θ) +O

(
1

∆N

)
,

ϕ1 = ϕ3 = ϕ5 = ϕ6 = O

(
1

∆N

)
.

(1.49)

В дальнейшем, слагаемые порядка O
(

1
∆N

)
«отбрасываются». В пределе ∆θ → 0

разницу ω(θ1)− ω(θ2) можно переписать как

ω(θ1)− ω(θ2) ≈ ω′(θ1)∆θ, ω′(θ1) =
dω

dθ

∣∣∣
θ=θ1

. (1.50)
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Таким образом, выражение для дискретного фундаментального решения можно

переписать в сокращенном виде:

gSn,js(∆N) ≈ 1

16π2a

∫∫ π

−π

[
cos (∆θω′(θ1)t) cos((n+ js)∆θ)sinc(∆N∆θ)

]
dθ1,2

+
1

16π2a

∫∫ π

−π

[
cos (∆θω′(θ1)t) cos((n− js)∆θ)sinc(∆N∆θ)

]
dθ1,2

+
1

16π2a

∫∫ π

−π

[
cos (∆θω′(θ1)t) cos (θ1(2n+ 1)− (n+ js)∆θ)sinc(∆N∆θ)

]
dθ1,2

1

16π2a

∫∫ π

−π

[
cos (∆θω′(θ1)t) cos(θ1(2n+ 1)− (n− js)∆θ)sinc(∆N∆θ)

]
dθ1,2.

(1.51)

Сделаем замену переменных θ = θ1, q = ∆θ и перепишем выражение (1.51),

используя свойство произведения, суммы и чётности косинусов:

gSn,js(∆N) =
1

8π

∫ π

0

(ψ1(n+ js + ω′(θ)t) + ψ1(n+ js − ω′(θ))t)dθ

+
1

8π

∫ π

0

(ψ1(n− js + ω′(θ)t) + ψ1(n− js − ω′(θ))t)dθ

+
1

8π

∫ π

0

cos (θ(2n+ 1))(ψ1(n+ js + ω′(θ)t) + ψ1(n+ js − ω′(θ))t)dθ

+
1

8π

∫ π

0

cos (θ(2n+ 1))(ψ1(n− js + ω′(θ)t) + ψ1(n− js − ω′(θ))t)dθ

+
1

8π

∫ π

0

sin (θ(2n+ 1))(ψ2(n+ js + ω′(θ)t) + ψ2(n+ js − ω′(θ))t)dθ

+
1

8π

∫ π

0

sin (θ(2n+ 1))(ψ2(n− js + ω′(θ)t) + ψ2(n− js − ω′(θ))t)dθ,

ψ1(Ξ) =
1

2πa

∫ θ+π

θ−π

cos (Ξq)sinc(q∆N)dq,

ψ2(Ξ) =
1

2πa

∫ θ+π

θ−π

sin (Ξq)sinc(q∆N)dq,

(1.52)

где ψ1 и ψ2 — волновые пакеты, распространяющиеся с групповой скоростью vg =

aω′. Итак, при осреднении функции gSn,js по мезомасштабу, фундаментальное

решение превращается в сумму интегралов от волновых пакетов, проходящих

по разные стороны. Далее покажем, что в пределе ∆N ≫ 1 выражения для ψ1
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и ψ2 соответствуют вещественным и мнимым частям от преобразования Фурье от

кардинального синуса соответственно:

1

2πa

∫ θ+π

θ−π

cos (Ξq)sinc(q∆N)dq =
1

2πa∆N

∫ (θ+π)∆N

(θ−π)∆N

cos

(
Ξq

∆N

)
sinc q dq

≈ 1

2πa∆N

∫ ∞

−∞
cos

(
Ξq

∆N

)
sinc q dq = ℜ

(
1

2πa∆N

∫ ∞

−∞
ei(

Ξq
∆N )sinc q dq

)
.

(1.53)

Аналогично,

1

2πa

∫ θ+π

θ−π

sin (Ξq)sinc(q∆N)dq ≈ ℑ
(

1

2πa∆N

∫ ∞

−∞
ei(

Ξq
∆N )sinc q dq

)
. (1.54)

Так как
1

2π

∫ ∞

−∞
eiξqsinc q dq =

1

2
H(1− |ξ|), (1.55)

то выражение для пакета ψ2(Ξ) равно нулю. А пакет ψ1(Ξ) равен 1
2a∆NH

(
1− |Ξ|

∆N

)
,

то есть подчиняется прямоугольной функции, имеющей ненулевые значения на

отрезке [− Ξ
∆N ; Ξ

∆N ].

Запишем окончательное выражения для дискретного фундаментального

решения и волновых пакетов:

gs(n, js,∆N) ≈ 1

4π

∫ π

0

(ψ(n− js + ω′(θ)t,∆N) + ψ(n− js − ω′(θ)t,∆N)) dθ

+
1

4π

∫ π

0

(ψ(n+ js + ω′(θ)t,∆N) + ψ(n+ js − ω′(θ)t,∆N)) dθ,

ψ(Ξ,∆N) =

cos2
(
θ(2n+ 1)

2

)
2a∆N

H

(
1− |Ξ|

∆N

)
.

(1.56)

Рассмотрим волновой пакет ψ(Ξ,∆N) в формуле (1.56). В пределе ∆N ≫ 1, то

есть при стремлении ∆N к бесконечности, отрезок, на котором прямоугольная

функция имеет ненулевые значения, «стягивается» в точку. С другой стороны, в

пределе a∆N ≪ L, множитель, стоящий перед прямоугольной функцией, стре-

мится к бесконечности. Из этого следует, что в пределах ∆N ≫ 1 и a∆N/L → 0,
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функция волнового пакета ψ стремится к дельта-функции:

ψ(n− js + ω′(θ)t,∞) ≈ δ(a(n− js + ω′(θ)t)) = δ(x− y + vg(θ)t), (1.57)

где vg —групповая скорость, определяемая как

vg(θ)
def
= vs cos

θ

2
sgnθ, (1.58)

где vs = ωea— скорость звука.

Таким образом, континуальное фундаментальное решение может быть запи-

сано в виде

gSc (x, y) =
1

4π

∫ π

0

δ(x− y + vg(θ)t)dθ +
1

4π

∫ π

0

δ(x− y − vg(θ)t)dθ

+
1

4π

∫ π

0

δ(x+ y + vg(θ)t)dθ +
1

4π

∫ π

0

δ(x+ y − vg(θ)t)dθ.
(1.59)

Таким образом, континуальное фундаментальное решение — суперпозиция вол-

новых пакетов ψ, распространяющихся с групповой скоростью vg(θ) и имеющих

форму дельта-функции Дирака. Поскольку формула для gSc получена в асимп-

тотическом приближении (∆N ≫ 1, a∆N/L ≪ 1), положение волнового пакета

можно определить с точностью до a∆N . Используя (1.37) и свойство свертки с

дельта-функциями, запишем выражение для слагаемого T S, соответствующего
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медленному процессу, связанному с баллистическим переносом энергии:

T S =
1

4π

∫ ∞

0

T 0(y)

∫ π

0

δ(x− y + vg(θ)t)dθdy

+
1

4π

∫ ∞

0

T 0(y)

∫ π

0

δ(x− y − vg(θ)t)dθdy

+
1

4π

∫ ∞

0

T 0(y)

∫ π

0

δ(x+ y + vg(θ)t)dθdy

+
1

4π

∫ ∞

0

T 0(y)

∫ π

0

δ(x+ y − vg(θ)t)dθdy =

1

4π

∫ π

0

T 0(x+ vg(θ)t)H(x+ vg(θ)t)dθ +
1

4π

∫ π

0

T 0(x− vg(θ)t)H(x− vg(θ)t)dθ

+
1

4π

∫ π

0

T 0(−x+ vg(θ)t)H(−x+ vg(θ)t)dθ

+
1

4π

∫ π

0

T 0(−x− vg(θ)t)H(−x− vg(θ)t)dθ.

(1.60)

Упростим выражение (1.60). Поскольку область определения функции кинети-

ческой энергии для полубесконечной цепочки x ⩾ 0, четвертое слагаемое в

формуле (1.60) равно нулю. Сумму первых трёх слагаемых можно преобразо-

вать, используя тот факт, что функция групповой скорости неотрицательна на

отрезке [0; π]. Следовательно, имеем окончательное выражение для T S:

T S =
1

2π

∫ π

0

T 0(|x+ vst cos θ|)dθ. (1.61)

Таким образом, кинетическая энергия в «континуальном» пределе есть суперпо-

зиция волновых пакетов, имеющих форму T 0. Учитывая замечание о точности

положения волнового пакета, можно прийти к выводу, что формула (1.61) примени-

ма только для начального поля кинетической энергии, медленно меняющегося в

пределах длины порядка a∆N . Формула (1.61) построена путём осреднения дис-

кретного фундаментального решения по мезомасштабу, приводящем к волновым

пакетам с близкими волновыми числами.

Выведем выражение для «быстрой» составляющей кинетической энергии.

С учетом предположения, выдвинутого в ходе континуализации, введем функ-
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цию T F (x) такую, что

T F (x) =

∫ ∞

0

T 0(y)gFc (x, y)dy, gFc (x, y) = lim
a∆N
L →0

gF (n, js,∆N),

gF (n, js,∆N) =
1

16π2a

∫∫ π

−π

cos ((ω(θ1) + ω(θ2))t)
8∑

i=1

ϕi(θ1, θ2)dθ1dθ2,

(1.62)

где ϕi определяются формулами (1.49). Немного ранее было доказано, что ос-

новной вклад в фундаментальное решение дают точки при θ1 ≈ θ2 = θ. Тогда,

учитывая (1.59), фундаментальное решение gFc можно переписать как

gFc (x, y) =
δ(x− y) + δ(x+ y)

2π

∫ π

0

cos (2ω(θ)t)dθ =
δ(x− y) + δ(x+ y)

2
J0(4ωet),

(1.63)

где Jν — функция Бесселя первого рода порядка ν. Тогда, аналогично, имеем

окончательное выражение для быстрой составляющей T F :

T F (x) =
T 0(x)H(x) + T 0(−x)H(−x)

2
J0(4ωet) =

T 0(x)

2
J0(4ωet). (1.64)

Таким образом, зная «быструю» и «медленную» составляющие (T F и T S соответ-

ственно), можно записать приближённое выражение для кинетической энергии в

полубесконечной цепочке в континуальном пределе как их сумму:

T (t, x) =
T 0(x)

2
J0(4ωet) +

1

2π

∫ π

0

T 0(|x+ vst cos θ|)dθ. (1.65)

Первое слагаемое в формуле соответствует высокочастотным колебаниям кине-

тической энергии, происходящим на малых временах и вызванным необратимым

превращением части (половины) кинетической энергии в потенциальную. Второе

слагаемое отвечает за баллистический перенос энергии. Фронт распространяется с

конечной скоростью, а именно со скоростью звука. На больших временах первым

слагаемым в формуле (1.65) можно пренебречь, тогда окончательное решение для
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кинетической энергии запишем, преобразовав слагаемое, T S:

T (t, x) =

∫ ∞

0

T 0(ξ) (G(t, |x− ξ|) +G(t, x+ ξ)) dξ, G(t, x)
def
=

H(vst− x)

2π
√
v2st

2 − x2
,

(1.66)

где функция G(t, |x|)— не что иное как фундаментальное решение для кинетиче-

ской энергии (удельной) в бесконечной цепочке [294, 130]. Полученное решение для

кинетической энергии будем именовать симметричным континуальным решением.

Континуализация. Второй способ

Анализ фундаментального решения для полубесконечной цепочки, Φ̇n,j

которое, исходя из формулы (1.27) можно записать как

Φ̇n,j =
1

π

∫ π

−π

cos
(2j + 1)θ

2
cos

(2n+ 1)θ

2
cos(ω(θ)t)dθ, (1.67)

показывает, что задача его нахождения в полубесконечной цепочке эквивалентна

задаче для бесконечной цепочки с тем же и отражённым от центра симметрии (чем

является не нулевая частица, а связь между частицами с индексами 0 и −1)

источниками:

Φ̈n = ω2
e(Φn+1 − 2Φn + Φn−1) + (δn,j + δn,−j−1)δ(t), (1.68)

с начальным условием (1.33). В свою очередь, эту задачу можно переписать как

Φ̈n = ω2
e(Φn+1 − 2Φn + Φn−1), (1.69)

с начальными условиями

Φn = 0, Φ̇n = δn,j + δn,−j−1. (1.70)
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Таким образом, записано уравнение динамики бесконечной цепочки с мгновенным

возмущением в точках j и−j−1. Зная фундаментальное решение для бесконечной

цепочки [110, 112], запишем выражение для Φ̇n как

Φ̇n,j = J2|n−j|(2ωet) + J2|n+j+1|(2ωet). (1.71)

Для полубесконечной цепочки решение (1.71) интерпретируется как сумма вкладов

от бегущей из точки j и отражённой от свободной границы волн (первое и второе

слагаемое (1.71) соответственно). Далее, рассматривая полученное решение с

позиции полубесконечной цепочки, знак модуля в индексе второго слагаемого (1.71)

будет опущен.

Для континуализации дискретного решения (1.29), которое, в свою очередь,

уже можно записать в виде

Tn =
∞∑
j=0

T 0
j

(
J2|n−j|(2ωet) + J2(n+j+1)(2ωet)

)2
, (1.72)

будет использован следующий подход. В работе [133] был предложен метод кон-

тинуализации, основанный на оценке фундаментального решения дискретной5

задачи динамики (для бесконечной цепочки Гука) на подвижном фронте бегущей

волны, основанный на методе стационарной фазы [144]. В работе [135] этот же

приём использован для задачи динамики цепочки Гука с изотопным дефектом для

случая, когда возмущение в цепочке задаётся в произвольной точке вне дефекта.

Следуя [135], запишем асимптотическую оценку для первого слагаемого (1.71)

на подвижном фронте бегущей волны, а второго слагаемого — на подвижном

фронте отражённой волны. Проделав, запишем оценку фундаментального решения

в следующем виде:

Φ̇n,j ∼ Φ̌|n−j|H (ωet− |n− j|) + Φ̌n+j+1H (ωet− (n+ j + 1)) , (1.73)

5Метод, о которой ниже пойдёт речь, регулярно применяется в континуальных задачах динамики [145, 146, 212].



41

Φ̌n
def
=

√
1

π
√
ω2
et

2 − n2
cos
(
Wnt−

π

4

)
, (1.74)

Wn(t)
def
= 2ωe

(√
1− n2

ω2
et

2
− n

ωet
arccos

n

ωet

)
, (1.75)

где ∼— символ асимптотической эквивалентности функции на больших временах;

величина Wn будет именоваться характерной частотой собственных возмущений

в цепочке Гука, такой, что частоты бегущей и отражённой волн соответственно

равны W|n−j| и Wn+j+1. Поскольку индекс, соответствующий отражённой волне,

больше для любых j и n, частоты бегущей и отражённой волн не равны, что не

согласуется с классической механикой сплошных сред (см., в частности, [147]).

Проанализировав разницу между частотами бегущей и отражённой волн,

∆W
def
= W|n−j| − Wn+j+1, полагаем, что она пренебрежима мала, когда j = 0 и

когда n = 0. Чтобы в этом убедиться, положим j = 0 и разложим ∆W в ряд

при 1/ωet = 0. Получим:

∆W|j=0 =
π

t
− 2n+ 1

ωet2
+O

(
(ωet)

−3
)
. (1.76)

Оценка для ∆W|n=0 удовлетворяет уравнению (1.76), если n заменить на j. Сле-

довательно, на больших временах ∆W ≪ ωe при n = 0 ∀j и при j = 0 ∀n. Этот

результат оказывается важным для асимптотического анализа фундаментального

решения, Φ̇2
n,j.

Для того чтобыпроанализировать выражение для кинетической энергии (1.144)

напишем отдельно асимптотическую оценку для Φ̇2
n,j:
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Φ̇2
n,j ∼ Φ̇2

n,j
def
=

1 + sin
(
2W|n−j|t

)
2π
√
ω2
et

2 − (n− j)2
H (ωet− |n− j|)

+
1 + sin (2Wn+j+1t)

2π
√
ω2
et

2 − (n+ j + 1)2
H (ωet− (n+ j + 1))

+
sin
((
W|n−j| +Wn+j+1

)
t
)
+ cos

((
W|n−j| −Wn+j+1

)
t
)

π 4

√(
ω2
et

2 − (n− j)2
)(

ω2
et

2 − (n+ j + 1)2
) H (ωet− (n+ j + 1)) .

(1.77)

Первое слагаемое в (1.77) представляет собой вклад от бегущей волны, второе и

третье — вклады от отражённой волны. Следуя [133, 134], сделаем разделение в

решении (1.77) в виде
Φ̇2

n,j =
˙̃Φ2
n,j +

˙̂
Φ2

n,j, (1.78)

˙̃Φ2
n,j

def
=

H (ωet− |n− j|)
2π
√
ω2
et

2 − (n− j)2
+

H (ωet− (n+ j + 1))

2π
√
ω2
et

2 − (n+ j + 1)2
, (1.79)

˙̂
Φ2

n,j
def
=
H (ωet− |n− j|) sin

(
2W|n−j|t

)
2π
√
ω2
et

2 − (n− j)2
+
H (ωet− (n+ j + 1)) sin (2Wn+j+1t)

2π
√
ω2
et

2 − (n+ j + 1)2

+
H (ωet− (n+ j + 1)) sin

((
W|n−j| +Wn+j+1

)
t
)

π 4

√(
ω2
et

2 − (n− j)2
)(

ω2
et

2 − (n+ j + 1)2
)

+
H (ωet− (n+ j + 1)) cos

((
W|n−j| −Wn+j+1

)
t
)

π 4

√(
ω2
et

2 − (n− j)2
)(

ω2
et

2 − (n+ j + 1)2
) ,

(1.80)

где ˙̃Φ2
n,j и ˙̂

Φ2
n,j — неосциллирующая и осциллирующая компоненты кинетиче-

ской энергии соответственно. Последняя представляет собой сумму из четырёх

слагаемых. Поскольку первые два из них соответствуют переходному процес-

су, связанному с выравниванием кинетической и потенциальной энергий, этими

слагаемыми пренебрегаем. Однако, поскольку характерные частоты бегущей и

отражённой волн близки друг к другу при j = 0 ∀n и n = 0 ∀j (см. (1.76)), послед-

нее слагаемое в уравнении (1.80) превращается в неосциллирующую компоненту.
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Отсюда заключаем, что возмущение на границе кардинально меняет характер

распространения отражённой от неё волны. Возможное физическое объяснение

последнего может лежать в эффекте сложения бегущей к границе и отражённой

от ней волн, что происходит мгновенно после начала возмущения и описывается

третьим и четвёртым слагаемыми в ˙̂
Φ2

n,j (см. формулу (1.80)). Чем дальше источ-

ник от границы, тем слабее эффект взаимодействия падающей волны с границей,

поскольку энергия теряется из-за дисперсии.

Далее приводится построение континуального решения для случаев с точеч-

ным источником мгновенного возмущения (начального распределения энергии) и

произвольным профилем кинетической энергии.

Точечное начальное распределение энергии

Рассмотрим точечное мгновенное возмущение, которому соответствует

начальный профиль кинетической энергии:

T 0
n = T 0δn,j, 2T 0 def

= mv2s , (1.81)

где T 0 — амплитуда начальной кинетической энергии; j — номер частицы, под-

верженной возмущению. В этом случае дискретное решение для кинетической

энергии записывается как

Tn = T 0
(
J2|n−j|(2ωet) + J2(n+j+1)(2ωet)

)2
. (1.82)

Введём функцию g(t, x, ξ), такую, что

ag(t, na, ja)
def
= Φ̇2

n,j. (1.83)
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Следовательно, функцию g также можно разделить на осциллирующую и неосцил-

лирующую компоненты, то есть, в виде

g(t, x, ξ) = ḡ(t, x, ξ) + ĝ(t, x, ξ), (1.84)

где ḡ — функция, которая в дальнейшем будет именоваться ядром фундаменталь-

ного решения, имеющая вид

ḡ(t, x > 0, ξ > 0) = G(t, |x− ξ|) +G(t, x+ ξ + a),

ḡ(t, x, 0) = G(t, x) +G(t, x+ a) +
cos ((W(x)−W(x+ a)) t)H (vst− (x+ a))

π 4

√
(v2st

2 − x2)
(
v2st

2 − (x+ a)2
) ,

ḡ(t, 0, ξ) = G(t, ξ) +G(t, ξ + a) +
cos ((W(ξ)−W(ξ + a)) t)H (vst− (ξ + a))

π 4

√
(v2st

2 − ξ2)
(
v2st

2 − (ξ + a)2
) ,

(1.85)

гдеW(x)—функция характерной частоты, такая, что

W(na) ≡ Wn (1.86)

в каждый момент времени. Пренебрегая осциллирующей компонентой функции g

и упрощая (1.85), запишем решение для кинетической энергии в виде

T (t, x > 0)|ξ>0/A ≈ G(t, |x− ξ|) +G(t, x+ ξ + a),

T (t, x)|ξ=0/A ≈ G(t, x) +G(t, x+ a) +

(
−1 + (a+2x)2

2v2st
2

)
H (vst− (x+ a))

π 4

√
(v2st

2 − x2)
(
v2st

2 − (x+ a)2
) ,

T (t, 0)/A ≈ G(t, ξ) +G(t, ξ + a) +

(
−1 + (a+2ξ)2

2v2st
2

)
H (vst− (ξ + a))

π 4

√
(v2st

2 − ξ2)
(
v2st

2 − (ξ + a)2
) .

(1.87)



45

Здесь A
def
= T 0a — константа размерностью Дж·м. Рассмотрим кинетическую

энергию на границе. Раскладывая выражение (1.87) при x = 0 в ряд в 1/(ωet) = 0,

получим

T (t, 0) ∼ A(a+ 2ξ)2

2πv3st
3

, (1.88)

откуда следует, что континуальное решение на границе затухает как 1/t3.

Основываясь на исследованиях, проведённых выше и упрощении (1.87),

отбрасывая слагаемые порядка O
(
(ωet)

−5
)
и выше, построим континуальное

решение в окончательном виде:

T (t, x > 0)|ξ>0/A = G(t, |x− ξ|) +G(t, x+ ξ + a)

T (t, x)|ξ=0/A = G(t, x) + G̃(t, x)

T (t, 0)/A = G(t, x) + G̃(t, ξ),

(1.89)

G̃(t, x) ≃
(
− 1

2πvst
+

2a2 + 8ax+ 7x2

4πv3st
3

)
H(vst− (x+ a)). (1.90)

Стоит отметить, что полученное континуальное решение не работает на фронтах

бегущей (x = ξ + vst) и отражённой (x = vst − ξ − a) волн. Асимптотическое

решение для кинетической энергии в данном случае может быть получено через

асимптотику функции Бесселя, аргумент которой равен порядку (формула (9.3.5)

в [148]). Таким образом, на фронтах отражённой и падающей волн кинетическая

энергия затухает как t− 2
3 . По такому же закону затухает кинетическая энергия на

фронте волны в бесконечной цепочке Гука [116].

Возмущение произвольного профиля

Введём континуальную функцию начальной кинетической энергии T 0(x),

такую, что

T 0(an) ≡ T 0
n . (1.91)
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Тогда построим континуальное решение для кинетической энергии, переписав

выражение (1.72), аналогично заменяя Tn на T (t, x), Φ̇2
n,j на ag(t, x, ξ) и

∑∞
j

на 1
a

∫∞
0 ...dξ. Учитывая неосциллирующую компоненту для кинетической энергии

и пренебрегая осциллирующей, получим следующее выражение для кинетической

энергии:

T (t, x) =

∫ ∞

0

T 0(ξ) (G(t, |x− ξ|) +G(t, x+ ξ + a)) dξ +∆TB(t, x), (1.92)

∆TB(t, x)
def
=

∫ ∞

0

T 0(ξ)H (vst− (x+ ξ + a))∆g(x, ξ, t)|q=1dξ, (1.93)

∆g(t, x, ξ)
def
=

q sin ((W (|x− ξ|) +W (x+ ξ + a)) t)

π 4
√
(v2st

2 − (x− ξ)2) (v2st
2 − (x+ ξ + a)2)

+
cos ((W (|x− ξ|)−W (x+ ξ + a)) t)

π 4
√
(v2st

2 − (x− ξ)2) (v2st
2 − (x+ ξ + a)2)

.

(1.94)

Здесь ∆TB — это слагаемое, отвечающее за эффекты ; q— константа, равная 1,

если быстроосциллирующее слагаемое учитывается в выражении для∆TB и 0, если

не учитывается.

Заметим, что выражение для кинетической энергии (1.92) содержит слагае-

мое, соответствующее быстроосциллирующей функции ĝ. Это слагаемое может

приввести к колебаниям кинетической энергии как функции между точками рас-

положения частиц. Следовательно, соответствующее решение для кинетической

энергии правильнее именовать не континуальным, а дискретно-континуальным

решением.

Учитывая свойство функций ˙̂
Φ2

0,j и
˙̂
Φ2

n,0, континуальное решение может

быть построено аналогично дискретно-континуальному, зная условие, при котором

функция∆g из осциллирующей превращается в неосциллирующую. Таким образом,
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окончательное решение можно записать в виде

T (t, x > 0) =

∫ ∞

0

T 0(ξ) (G(t, |x− ξ|) +G(t, x+ a+ ξ)) dξ

+

∫ a

0

T 0(ξ)∆g(t, x, ξ)|q=0dξ,

T (t, 0) =

∫ ∞

0

T 0(ξ)
(
G(t, ξ) + G̃(t, ξ)

)
dξ.

(1.95)

Полученное решение будем именовать континуальным решением. Если начальное

распределение энергии на границе равно нулю, третьим слагаемым в первой

формуле (1.95) можно пренебречь.

Таким образом, получено выражение для кинетической энергии в конти-

нуальном представлении. Основное его математическое отличие заключается,

во-первых, в нарушении симметрии относительно свободной границы; во-вторых

— в добавлении слагаемого ∆TB, которое указывает на взаимодействие волны

энергии, достигнутой границей, с самой границей. Поскольку континуальное и

дискретное континуальное решения в нуле кардинально отличаются (в отличие от

симметрично-континуального), вблизи границы будет наблюдаться скачок этих

решений.

Решение из кинетической теории для невзаимодействующих частиц

Производится вывод выражения для кинетической энергии через теорию

Больцмана [149] для невзаимодействующих частиц с использованием подхода,

предложенного в работе [108], реализованным для бесконечной цепочки.

Кинетическая теория предполагает, что тепло в кристалле переносится

квазичастицами, движущимися с разными скоростями. В гармоническом кристалле

эти квазичастицы движутся свободно, без взаимодействий. Предположим, что

каждая квазичастица переносит одну и ту же порцию тепловой энергии. Тогда

энергия элементарного объёма пропорциональна количеству квазичастиц в этом

объёме.
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Следуя [108], введём функцию распределения f , такую, что

f(t, x, v) = lim
∆x,∆v→0

∆Q

∆x∆v
, (1.96)

где ∆Q — число квазичастиц в пространстве скоростей и координат в интерва-

лах [v−∆v/2; v+∆v/2] и [x−∆x/2; x+∆x/2] соответственно. Изменение числа

квазичастиц удовлетворяет за элементарное время dt удовлетворяет уравнению

(f(t+∆t, x, v)− f(t, x, v))dxdv = (f(t, x, v)− f(t, x+∆x, v))vdtdx, (1.97)

что в первом приближении соответствует уравнению

∂f

∂t
+ v

∂f

∂x
= 0. (1.98)

Уравнение (1.98) — кинетическое уравнение Больцмана без столкновений, которое

может быть рассмотрено как набор независимых волновых уравнений. С учётом

свободной границы, запишем решение уравнения (1.98) в следующем виде:

f(t, x, v) = f0(x− vt, v)H(x− vt) + f0(vt− x, v)H(vt− x), (1.99)

где f0(x, v) — начальная функция распределения квазичастиц. Здесь первое

слагаемое соответствует бегущей падающей волне, второе — отражённой.

Зная функцию распределения, кинетическую энергию можно определить как

T (t, x) = κ

∫ ∞

−∞
f(t, x, v)dv, (1.100)

где κ — коэффициент пропорциональности. Тогда, предполагая отсутствие на-

чальных потоков энергии, запишем соотношение между начальной кинетической
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энергии, T 0(x), и функции распределения квазичастиц в виде

f0(x, v) =
1

κ
T 0(x)Ξ(v), (1.101)

где Ξ(v) — чётная относительно нуля функция, удовлетворяющая условию норми-

ровки ∫ ∞

−∞
Ξ(v)dv = 1. (1.102)

Для цепочки Гука функция Ξ имеет вид [108]

Ξ(v) =
1

π

H(v2s − v2)√
v2s − v2

. (1.103)

Подставляя (1.99) в (1.100) с использованием (1.101) и (1.103), получим

T (t, x) =
1

π

∫ vs

−vs

T 0(x− vt)H(x− vt)dv√
v2s − v2

+
1

π

∫ vs

−vs

T 0(vt− x)H(vt− x)dv√
v2s − v2

.

(1.104)

Из (1.104) видим, что область интегрирования совпадает с областью изменения

групповой скорости (см. (1.58)) в пределах от 0 до 2π. Переписав (1.104) через

интегралы по волновому числу, получим

T (t, x) =
1

2π

∫ 2π

0

T 0 (x+ vg(θ)t)H (x+ vg(θ)t)

+
1

2π

∫ 2π

0

T 0 (−x− vg(θ)t)H (−x− vg(θ)t) =
1

π

∫ π

0

T 0(|x+ vst cos θ|)dθ,
(1.105)

или

T (t, x) = 2

∫ ∞

0

T 0(ξ) (G(t, |x− ξ|) +G(t, x+ ξ)) dξ. (1.106)

Таким образом, выражение для кинетической энергии, полученное из кинетической

теории, совпадает с симметричным континуальным решением, с точностью до

множителя 2.

В следующем разделе производится сравнение указанных выше решений
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между собой и численным решением.

1.1.5 Сравнение аналитического и численного решений

Представим сравнение аналитических решений для кинетической энергии в

дискретном и континуальных представлениях с численным решением. Последнее

строится через интегрирование уравнений динамики (1.1) с некоррелированными

случайными (см. (1.5)) начальными условиями (1.3), (1.4) методом Кэнди и Розму-

са [297] четвёртого порядка с оптимизирующими параметрами [298] и шагом по

времени ωe∆t = 0.01. Найденные значения скоростей частиц используются для

вычисления кинетической энергии (1.28) через осреднение их квадратов по 105

реализациям на каждом шаге по времени. Для случайных чисел ρn задаётся рав-

номерное распределение на отрезке [−
√
3;
√
3]. Выбор плотности распределения

случайных чисел здесь не обсуждается, поскольку плотность любого распределения

скоростей в линейном кристалле стремится к распределению Гаусса [150].

Точечное мгновенное возмущение

Рассмотрим мгновенное точечное возмущение, которому соответствует

начальная кинетическая энергия

T 0(x) = Aδ(x− h). (1.107)

Отметим, что симметричное континуальное решение для кинетической энергии

получается путём подстановки (1.107) в формулу (1.66) — получим:

T =
A

2π

(
H(vst− |x− h|)√
v2st

2 − (x− h)2
+
H(vst− |x+ h|)√
v2st

2 − (x+ h)2

)
. (1.108)

Итак, получено симметричное континуальное решение для кинетической энергии

в полубесконечной цепочке при точечном возмущении. Из формулы (1.108) видно,
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что в точке x = 0 справедлива асимптотика

T (t, 0) ∼ A

πvst
. (1.109)

Симметричное относительно границы решение для кинетической энергии в полу-

бесконечной цепочке затухает как 1/t, что значительно медленнее континуального

решения (1.89), которое затухает как 1/t3 (см. (1.88)). Аномально быстрое затухание

волнового поля вблизи границы свидетельствует о таком явлении как антило-

кализация отражённой волны. Явление антилокализации нестационарных волн

было впервые описано С.Н. Гавриловым и Е.В. Шишкиной в работе [209] в задаче

динамики струны с включением и систематически изучается также в дискрет-

ных [134, 210, 135, 211] средах. Из формулы (1.88) следует, что антилокализация

возникает после возмущения в любой точке, и чем эта точка ближе к границе,

тем сильнее антилокализация. Из (1.88) и (1.92) заключаем, что антилокализация

отражённой волны возникает при мгновенном возмущении любого профиля. Стоит

отметить, что антилокализация волны в полубесконечной цепочке при возмущении

на границе ранее была обнаружена в работе [210] (на основе асимтотического

решения для скорости частицы на границе, затухающего как t− 3
2 ) и в [114]. В

последней работе термин «антилокализация» не использовался, а аномальное зату-

хание скорости на границе объясняется «последствием факта, что гармоническая

решётка не забывает её граничное условие даже в термодинамическом пределе».

Рассмотрим случай возмущения в точке h = 0 (то есть, на границе). Распре-

деление кинетической энергии представлено на рисунке 1.4. Из рисунка 1.4 видно,

что решение, симметричное для бесконечной цепочки, некорректно описывает

распространение волн. Последнее гораздо точнее описывается континуальным

решением, которое выглядит как среднее по пространству дискретного решения.

Рассмотрим случай возмущения в точке, отдалённой от границы, напри-

мер h = 20a. Распределение кинетической энергии представлено на рисунке 1.5.

Как и ожидалось, возмущение вдали от границы изменяет поле кинетической
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Рис. 1.4: Кинетическая энергия в полубесконечной цепочке после мгновенного
возмущения в точке h = 0. Сравнение аналитического и численного решений
показано при ωet = 100. Показаны континуальное (1.89), симметричное для
бесконечной цепочки (1.108) и дискретное (1.82) решения соответственно.

энергии (в сравнении с симметричным для бесконечной цепочки решением) только

в окрестности точки n = 0 по причине антилокализации отражённой волны. Однако

антилокализация проявляется слабее в отличие от возмущения на границе (что,

собственно, подтверждается формулой (1.88)). Изменение во времени кинетической

энергии на границе вследствие антилокализации представлено на рисунке 1.6.

Из рисунка видно, что кинетическая энергия на границе в континуальном пре-

деле описывается гораздо точнее описывается континуальным решением, нежели

симметричным континуальным.

В следующем разделе рассматриваются профили начальных кинетических

энергий при возмущении на отрезке.
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Рис. 1.5: Кинетическая энергия в полубесконечной цепочке после мгновенного
возмущения в точке h = 20a. Сравнение аналитического и численного решений
показано при ωet = 100. Показаны континуальное (1.89), симметричное для
бесконечной цепочки (1.108) и дискретное (1.82) решения соответственно.

Прямоугольное и ступенчатое возмущения

Рассмотрим прямоугольное возмущение вида

2T 0(x) = mv2s (H(x− L1)−H(x− L1 − L2)) , (1.110)

где L1 — расстояние от границы до возмущения; L2 — ширина возмущения и

ступенчатое возмущение вида

2T 0(x) = mv2sH (L− x) , (1.111)

где L—ширина возмущения. Производится сравнение аналитических результа-

тов, соответствующих дискретному (формула (1.72)), симметричному контину-

альному (формула (1.66)), дискретно-континуальному (формулы (1.92), (1.93) и

континуальному решениям для кинетической энергии с соответствующими числен-

ными решениями. Для получения результатов, соответствующих континуальным
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Рис. 1.6: Изменение во временикинетической энергии на границе после мгновенного
возмущения в точке h = 20a. Сравнение аналитического и численного решений.
Показаны континуальное (1.89), симметричное для бесконечной цепочки (1.108) и
дискретное (1.82) решения соответственно.

и дискретно-континуальным решениям для кинетической энергии, интегралы в

формулах (1.92), (1.95) вычисляются с использованием метода трапеций. Сравне-

ние аналитического и численного решений представлено на рисунках 1.7, 1.8. Из

рисунков 1.7, 1.8 видно, что дискретно-континуальное и континуальное решения

описывают изменение кинетической энергии на границе гораздо точнее симмет-

ричного континуального решения. Тем не менее, в области начального возмущения

дискретно-континуальное и континуальное решения отклоняюся от точного (дис-

кретного) и численного решений (см рисунки 1.7, 1.8), а также от симметричного

континуального решения, которое совпадает с теми на рисунке 1.7. Причина

расхождений, по-видимому, заключается в наличии слагаемого T 0(x)
2 J0(4ωet), отве-

чающего за происходящий в области мгновенного возмущения быстрый процесс

выравнивания кинетической и потенциальной энергий. Вывод континуального

решения предполагает пренебрежение осциллирующими слагаемыми, соответ-

ствующими падающей и отражённой волнам (т.е. первыми двумя слагаемыми
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Рис. 1.7: Профиль кинетической энергии в полубесконечной цепочке, подвер-
женной мгновенному прямоугольному возмущению, (1.110). Ширина начального
профиля кинетической энергии показана штрихпунктирными линиями. Показаны
сравнения численного и континуального (1.95), дискретно-континуального (1.92),
симметрично-континуального (1.66) и дискретного (1.72) решений при ωet = 200.

в (1.79)). Поскольку первое слагаемое в выражении (1.66) затухает во времени,

симметричное континуальное решение постепенно согласуется с континуальным

или дискретно-континуальным решениями. Также из рисунка 1.8 видно, что сту-

пенчатое возмущение приводит к ярче выраженным колебаниям кинетической

энергии, что описывается дискретным и дискретно-континуальным решениями.

Сравнение континуального и дискретно-континуального решений позволяет заклю-

чить, что возмущение, распространяющееся от границы после начала ступенчатого

возмущения приблизительно со скоростью звука - артефакт, описывающийся

слагаемым ∆TB (а именно, главный вклад вносит первое слагаемое в числителе

формулы (1.94), определяемой. (1.93). Отметим также, что профили континуально-

го и симметричного континуального решений для кинетической энергии имеют

изломы в области фронтов и границ начального возмущения (см. рисунки 1.7 и 1.8).

Это значит, что производные по пространству от соответствующих функций будут

претерпевать разрыв в этих точках. По-видимому, этих недостатков можно избе-
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Рис. 1.8: Профиль кинетической энергии в полубесконечной цепочке, подвер-
женной мгновенному ступенчатому возмущению, (1.111). Ширина начального
профиля кинетической энергии показана штрихпунктирными линиями. Показаны
сравнения численного и континуального (1.95), дискретно-континуального (1.92),
симметрично-континуального (1.66) и дискретного (1.72) решений при ωet = 200.

жать, если рассматривать наклонные профили начальной кинетической энергии.

Более подробно этот вопрос исследуется в работе [127].

Исследуем изменение кинетической энергии на границе. Симметричное

континуальное решение может быть найдено в замкнутой форме; например, в

случае прямоугольного начального возмущения как

T (t, 0) =
mv2s
2π

[
arccos

(
L1

vst

)
H

(
t− L1

vs

)
−arccos

(
L1 + L2

vst

)
H

(
t− L1 + L2

vs

)]
,

(1.112)

и в случае ступенчатого возмущения как

T (t, 0) =
mv2s
2

(
1

2

(
H

(
L

vs
− t

)
+ J0(4ωet)

)
+

1

π
arcsin

(
L

vst

)
H

(
t− L

vs

))
.

(1.113)

Изменение кинетической энергии на границе представлено на рисунках 1.9,1.10.
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Рис. 1.9: Изменение кинетической энергии на границе в полубесконечной цепоч-

ке, подверженой прямоугольному (1.110) мгновенному возмущению. Показаны

сравнения численного и континуального (1.95), дискретно-континуального (1.92),

симметрично-континуального (1.66) и дискретного (1.72) решений при ωet = 200.
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Рис. 1.10: Изменение кинетической энергии на границе в полубесконечной це-
почке, подверженой ступенчатому (1.111) мгновенному возмущению. Показаны
сравнения численного и континуального (1.95), дискретно-континуального (1.92),
симметрично-континуального (1.66) и дискретного (1.72) решений при ωet = 200.
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Из рисунков 1.9, 1.10 видно, что в континуальном пределе изменение во

времени кинетической энергии на границе с приемлемой точностью описывает-

ся дискретно-континуальным решением. Что касается континуального решения,

оно описывает изменение кинетической энергии только на больших временах,

после отражения волны от границы. Из рисунков 1.9, 1.10 можно окончательно

также убедиться в некорректности описания изменения кинетической энергии

симметричным континуальным решением.

1.2 Перенос энергии в полубесконечной цепочке при наличии

подвода
В настоящем параграфе рассматривается та же модель деформируемого

твёрдого тела, что и в предыдущем параграфе, но с учётом следующих предполо-

жений (помимо того, что частицы взаимодействуют с ближайшими соседями): на

частицы в цепочке действует сила слабого линейного вязкого трения; движение

частиц обусловлено внешним стохастическим возбуждением в виде белого шума.

1.2.1 Постановка задачи

Уравнения динамики цепочки в виде системы связанных уравнений Ланже-

вена:

dun = vndt, n ∈ N ∪ {0}

dvn =
(
ω2
e(un+1 − un)− ω2

e(un − un−1)(1− δn,0)− 2ηvn
)
dt+ bndWn,

η ≪ ωe, dWn = ρn
√
dt, ⟨ρn⟩ = 0, ⟨ρn(tl)ρn′(tl′)⟩ = δn,n′δ(tl − tl′),

(1.114)

где η— вязкость среды;Wn —некоррелированные Винеровские процессы; ρn(t)—

независимые случайные числа с нулевым математическим ожиданием и единичной

дисперсией; bn(t)— интенсивность стохастического возмущения. В начальный

момент времени все частицы имеют нулевые перемещения и скорости:

un(0) = 0, vn(0) = 0. (1.115)
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Постановка задачи в виде написанных выше уравнений как обобщение уравнения

Ланжевена используется в работах [130, 131]. Второе уравнение динамики (1.114)

может быть переписано в форме, представленной в [151, 112, 132] (где в левой части

— производная от скорости, а правая часть содержит слагаемое Ẇ , отвечающее за

белый шум). Рассматриваемая здесь форма уравнений Ланжевена представляется

удобной для поиска аналитического решения поставленной задачи.

1.2.2 Дискретное решение для кинетической энергии

Рассмотрим бесконечное множество реализаций случайного процесса. Как и в

предыдущем разделе, перенос энергии, вызванный стохастическим подводом, будем

описывать с помощью кинетической энергии (1.28). Подставляя представление для

скорости в виде

vn =
1

π

∫ π

−π

v̂(θ) cos
(2n+ 1)θ

2
dθ, (1.116)

где v̂ — неизвестная функция, в (1.28), получим

2Tn =
m

π2

∫∫ π

−π

⟨v̂1v̂2⟩ cos
(2n+ 1)θ1

2
cos

(2n+ 1)θ2
2

dθ1dθ2, ˆ[...]i =
ˆ[...](θi).

(1.117)

Таким образом, для вычисления Tn необходимости в нахождении поля скоростей

нет, а достаточно знать математическое ожидание от величины ⟨v̂1v̂2⟩. Функцию v̂

определим через прямое дискретное косинус-преобразование от скорости vn (см.

формулу (1.21)). Применение дискретного косинус-преобразования к уравнениям

(1.1) даёт следующую систему уравнений относительно û и v̂:

dû = v̂dt,

dv̂ =
(
−ω2û− 2ηv̂

)
dt+

∞∑
n=0

bndWn cos
(2n+ 1)θ

2
.

(1.118)

Начальные условия для системы (1.118) записываются как

û = v̂ = 0, (1.119)
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Перепишем задачу (1.118—1.119) в векторно-матричной форме. Для этого введём

вектор û(θ), такой, что

û(θ) =

û(θ)
v̂(θ)

 . (1.120)

Тогда система уравнений (1.118) с начальными условиями (1.119) переписывается в

виде векторного стохастического дифференциального уравнения первого порядка,

в виде

dû = Aûdt+BdW, (1.121)

A(θ) =

 0 1

−ω2(θ) −2η

 , B(θ) =

 0 0 ...

b0 cos
θ

2
b1 cos

3θ

2
...

 , (1.122)

dW =


dW0

dW1

...

 , (1.123)

û = 0. (1.124)

Сделаем следующую замену в уравнении (1.121):

y = e−Atû. (1.125)

Тогда, для того чтобы найти dy, воспользуемся леммой Ито (см. формулу (6.12)

в [143]). Для s-ой компоненты вектора dy её можно записать в виде:

dys =

(
∂ys
∂t

+
∂ys
∂ûα

(Aû)α +
1

2

∂2ys
∂ûα∂ûβ

BαγBβγ

)
dt+

∂ys
∂ûα

BαγdWγ, (1.126)

где по повторяющимся индексам полагается суммирование. Подставляя (1.125)

в (1.126) покомпонентно, убеждаемся, что первое слагаемое в уравнении (1.126)

равно нулю ∀s. Следовательно, имеем следующее уравнение для dy:

dy = e−AtBdW, (1.127)
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откуда, учитывая (1.124), получим

y =

∫ t

0

e−AτB(τ)dW. (1.128)

Делая обратную замену û → y, получаем искомое решение для û в виде интеграла

Ито:

û =

∫ t

0

eA(t−τ)B(τ)dW. (1.129)

Введём матрицу дисперсий,D, такую, что

D
def
=

〈(
û1 − ⟨û1⟩

)
⊗
(
û2 − ⟨û2⟩

)〉
, (1.130)

где ⊗ означает диадное умножение двух векторов6. Поскольку ⟨ρn⟩ равно нулю, то

и û равно нулю. Тогда матрицаD записывается в виде

D =
〈
û1 ⊗ û2

〉
=

⟨û1û2⟩ ⟨û1v̂2⟩

⟨v̂1û2⟩ ⟨v̂1v̂2⟩

 . (1.131)

Таким образом, матрица дисперсийD— это ковариационная матрица, элементы

которой — попарные ковариации образов перемещений и скоростей. С другой сто-

роны, матрица D может быть вычислена через подстановку û из уравнения (1.129)

в (1.131). Это даёт

〈
û1 ⊗ û2

〉
=

〈∫ t

0

∫ t

0

(
eA1(t−τ1)B1(τ)dW1

)
⊗
(
eA2(t−τ2)B2(τ)dW2

)〉

=

〈∫ t

0

∫ t

0

eA1(t−τ1)B1(τ1)dW1 ⊗
(
B2(τ2)dW2

)
eA

⊤
2 (t−τ2)

〉
,

(1.132)

где ⊤— знак транспонирования. Здесь использовано свойство матричной экспо-

ненты [154]

(eA)⊤ = eA
⊤
. (1.133)

6{X⊗Y}ij = XiYj .
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Запишем выражение для диадного произведения векторов в (1.132) в виде

B1(t1)dW1 ⊗
(
B2(t2)dW2

)
=

0 0

0 dg1,2

 , (1.134)

dg1,2
def
=

∞∑
n,n′=0

bn(t1)bn′(t2) cos
(2n+ 1)θ1

2
cos

(2n′ + 1)θ2
2

dWn,1dWn′,2

=
√

dt1dt2

∞∑
n,n′=0

bn(t1)bn′(t2) cos
(2n+ 1)θ1

2
cos

(2n′ + 1)θ2
2

ρn(t1)ρn′(t2).

(1.135)

Используя свойство математического ожидания произведения случайных чи-

сел ρ (см. (1.114)), преобразуем (1.132) в виде

〈
û1 ⊗ û2

〉
=

∫ t

0

eA1(t−τ)G(τ)eA
⊤
2 (t−τ)dτ, (1.136)

G(t)
def
=

0 0

0
∞∑
n=0

b2n(t) cos
(2n+ 1)θ1

2
cos

(2n+ 1)θ2
2

 . (1.137)

Из уравнения (1.137) видим, что матрицаG равна произведению B1B
⊤
2 . Оконча-

тельно получим:

D =

∫ t

0

eA1(t−τ)
(
B1(τ)B

⊤
2 (τ)

)
eA

⊤
2 (t−τ)dτ. (1.138)

Отсюда искомая ковариация находится как D22. При необходимости компонен-

ты D12 и D21 могут быть использованы для вычисления потока энергии. Более

строгий вывод матрицы дисперсий, соответствующий стохастическому уравнению

вида (1.121), приведён в разделе 6.4 работы [143].

Перемножив последовательно матрицы, содержащиеся в интегранде (1.138),

перепишем элемент D22 в виде
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⟨v̂1v̂2⟩ =
∞∑
n=0

b2n(t) ∗

(
e−2ηt

∏
i=1,2

φi(t) cos
(2n+ 1)θi

2

)
, (1.139)

φi(t) = cos
(
t
√
ω(θi)2 − η2

)
−
η sin

(
t
√
ω(θi)2 − η2

)
√
ω(θi)2 − η2

, (1.140)

X(t) ∗ Y (t)
def
=

∫ t

0

X(τ)Y (t− τ)dτ =

∫ t

0

X(t− τ)Y (τ)dτ. (1.141)

Следуя [130], введём функцию χn, такую, что

2χn
def
= mb2n, χn

∣∣
t<0

= 0. (1.142)

Первое выражение (1.142) — аналог определения (1.28), для связи функции χn и

интенсивности внешнего воздействия. С точки зрения физической интерпретации

функция χ будет пониматься как скорость подвода энергии (или скорость закачки

энергии). Второе выражение в (1.142) — предположение, что функция χ финитна.

Подставляя (1.139) в (1.117), получим следующее выражение для кинетической

энергии:

Tn =
∞∑
j=0

χj(t) ∗
(
e−2ηtI2n,j(t)

)
,

In,j(t)
def
=

1

π

∫ π

−π

φ̂(t, θ) cos
(2j + 1)θ

2
cos

(2n+ 1)θ

2
dθ

φ̂(t, θ) = cos
(
t
√
ω(θ)2 − η2

)
−
η sin

(
t
√
ω(θ)2 − η2

)
√
ω(θ)2 − η2

,

(1.143)

которое является точным решением при произвольной η. Пользуясь тем, что η ≪ ωe,
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формулу (1.143) можно упростить:

Tn =
∞∑
j=0

χj(t) ∗
(
e−2ηtΦ̇2

n,j(t)
)
,

Φ̇n,j(t)
def
=

1

π

∫ π

−π

cos
(2j + 1)θ

2
cos

(2n+ 1)θ

2
cos(ω(θ)t)dθ +O

(
η

ωe

)
,

(1.144)

где было использовано допущение
√
ω2 − η2 ≈ ω. Отбрасывая слагаемое поряд-

ка O(η/ωe) и используя доказанное в предыдущем параграфе равенство для целых

неотрицательных чисел n и j:

1

π

∫ π

−π

cos(ω(θ)t) cos
(2n+ 1)θ

2
cos

(2j + 1)θ

2
dθ = J2|n−j| (2ωet) + J2(n+j+1) (2ωet) ,

(1.145)

приходим к следующему выражению для кинетической энергии

Tn =
∞∑
j=0

χj(t) ∗
(
e−2ηt

(
J2|n−j| (2ωet) + J2(n+j+1) (2ωet)

)2)
, (1.146)

которое будем именовать дискретным решением. Решение (1.146)—сумма вкладов

по возмущённым j-ым частицам, каждый из которых представляет собой свёртку

скорости подвода в энергии в соответствующей точке и домноженного на e−2ηt

квадрата фундаментального решения задачи мгновенного возмущения в той же

точке в консервативной системе (см. раздел 1.1.4).

По аналогии с в разделом 1.1.3, напишем решение для кинетической энергии

для цепочки Гука, находящейся в слабовзязкой среде при произвольных граничных

условиях:

Tn =
∑
j∈P

χj(t) ∗
(
e−2ηtΦ̇2

n,j(t)
)
, Φ̈n = ω2

eLnΦn + δn,jδ(t), (1.147)

гдеP—множество чисел, индексирующих частицы, подверженные возмущению;Ln

— линейный разностный оператор, зависящий от конкретных граничных условий.
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Здесь уравнение относительноΦ решается с начальным условием (1.33). Для случая

с произвольным коэффициентом линейного вязкого трения точнее использовать

другую формулу для кинетической энергии:

Tn =
∑
j∈P

χj(t) ∗ Φ̇2
n,j(t), Φ̈n = ω2

eLnΦn − 2ηΦ̇n + δn,jδ(t), (1.148)

где уравнение относительно Φ решается с тем же начальным условием.

1.2.3 Кинетическая энергия в континуальном пределе

Континуализацию дискретного решения (1.148) будем проводить двумя

способами.

Первый способ заключается в использовании формулы кинетической энергии

для бесконечной цепочки, выведенной в работе [130]:

T (t, x) =

∫∫ ∞

−∞
χ(τ, ξ)G(t− τ, x− ξ)dξdτ, (1.149)

где G(t, x)—фундаментальное решение задачи переноса энергии в бесконечной

цепочке с линейным вязким трением [130]; T (t, x) и χ(t, x) — соответственно

континуальные функции кинетической энергии и скорости подвода энергии, такие,

что

T (t, an) ≡ Tn(t), χ(t, an) ≡ χn(t). (1.150)

Далее поле кинетической энергии симметризуется относительно свободной грани-

цы. Таким образом, выражение для кинетической энергии уже для полубесконечной

цепочки можно записать как

T (t, x) =

∫∫ ∞

−∞
χ(τ, |ξ|)G(t− τ, x− ξ)dξdτ

=
1

2π

∫ ∞

0

∫ t

|x−ξ|
vs

χ(τ, ξ)
e−2η(t−τ)dτdξ√

v2s(t− τ)2 − (x− ξ)2

+
1

2π

∫ ∞

0

∫ t

x+ξ
vs

χ(τ, ξ)
e−2η(t−τ)dτdξ√

v2s(t− τ)2 − (x+ ξ)2
,

(1.151)



66

где первое слагаемое — вклад в изменение кинетической энергии от падающей

волны, второе — от отражённой. Решение (1.151) будем именовать симметричным

континуальным решением. То же решение получится, если применить свёртку по

времени функции χ и ядра решения (1.66), домноженного на e−2ηt.

Второй способ заключается через использование оценки фундаментального

решения, входящего в ядро свёртки формулы (1.146) на фронтах падающей и

отражённой волн, что сделано в разделе 1.1.4. По аналогии с этим же разделом,

используется формула (1.80), в которой будут учитываться два последних слагае-

мых, соответствующих условно быстрым компонентам. И, наконец, Tn заменяется

на T (t, x), а Φ̇2
n,j —на ag(x, ξ, t), и

∑∞
j —на 1

a

∫∞
0 ...dξ. Таким образом, полученное

решение записывается в виде

T (t, x) =
1

2π

∫ ∞

0

∫ t

|x−ξ|
vs

χ(τ, ξ)e−2η(t−τ)dτdξ√
v2s(t− τ)2 − (x− ξ)2

+
1

2π

∫ ∞

0

∫ t

x+ξ+a
vs

χ(τ, ξ)e−2η(t−τ)dτdξ√
v2s(t− τ)2 − (x+ ξ + a)2

+∆TB,

(1.152)

∆TB(t, x) =

∫ ∞

0

∫ t

x+ξ+a
vs

χ(τ, ξ)e−2η(t−τ)∆g(t− τ, x, ξ)|q=1dτdξ, (1.153)

где ∆g(t, x, ξ) определяется формулой (1.94). Согласно анализу случая внезапного

точечного подвода (см. раздел 1.2.5), пренебрежение быстрым слагаемым в (1.94),

то есть, допущение q = 0 приводит к потере точности решения для кинетической

энергии вблизи границы. Выражение для кинетической энергии (1.152) будем

именовать дискретно-континуальным решением. Это решение состоит из вкладов

от падающей и отражённой волн (описывается двумя слагаемыми в (1.152)),

а также слагаемого ∆TB, отвечающего за взаимодействие этих волн. Влияние

этого слагаемого на изменение кинетической энергии будет обсуждаться далее.

Установившееся решение, если оно существует, определяется как T∞(x)
def
=

T (∞, x). Далее будем рассматривать случаи мгновенного и внезапного точечного

подводов энергии.
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1.2.4 Пример. Мгновенный подвод энергии

Рассмотрим мгновенный подвод энергии, которому соответствует следующая

функция χ:

χn(t) = T 0
nδ(t) (1.154)

в дискретном представлении, или

χ(t, x) = T 0(x)δ(t), (1.155)

в континуальном представлении. В таком случае перенос энергии соответствует

мгновенному возмущению при начальном распределении T 0(x), что в бездиссипа-

тивном пределе (η → 0+) рассмотрено в разделе 1.1. Влияние вязкого трения в

данном случае не представляет интереса к рассмотрению.

1.2.5 Пример. Внезапный точечный подвод

Рассмотрим внезапный точечный подвод в точке j, которому соответствует

следующая функция χ:

χn(t) = 2χ0δn,jH(t) (1.156)

в дискретном представлении, или

χ(t, x) = 2χ0aδ(x− h)H(t), h = ja, (1.157)

где χ0 — константа размерностью Вт., в континуальном представлении. Дис-

кретное решение для кинетической энергии получим подстановкой функции χ,

определяемой в (1.156) в выражение, что даёт

Tn(t) = 2χ0

∫ t

0

e−2ητ
(
J2|n−j|(2ωeτ) + J2(n+j+1)(2ωeτ)

)2
dτ. (1.158)

В пределе t → ∞ выражение для Tn может быть получено в замкнутой форме,

содержащей гипергеометрические функции [153], но в весьма громоздкой форме.

Симметричное континуальное решение получается подстановкой представ-
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ления функции χ (1.157) в (1.151), что даёт

T (t, x) =
χ0aH(vst− |x− h|)

π

∫ t

|x−h|
vs

e−2ητdτ√
v2sτ

2 − (x− h)2

+
χ0aH(vst− |x+ h|)

π

∫ t

x+h
vs

e−2ητdτ√
v2sτ

2 − (x+ h)2
.

(1.159)

При наличии вязкого трения, выражение для установившегося симметричного

континуального решения можно записать в виде

T∞(x) =
χ0

πωe

(
K0

(
2η|x− h|

vs

)
+K0

(
2η(x+ h)

vs

))
. (1.160)

Дискретно-континуальное решение для кинетической энергии получается

подстановкой представления (1.157) в формулу (1.152), что даёт

T (t, x) =
χ0aH(vst− |x− h|)

π

∫ t

|x−h|
vs

e−2ητdτ√
v2sτ

2 − (x− h)2

+
χ0aH(vst− |x+ h+ a|)

π

∫ t

x+h+a
vs

e−2ητdτ√
v2sτ

2 − (x+ h+ a)2
+∆TB,

(1.161)

∆TB(t, x) = 2χ0aH(vst− |x+ h+ a|)
∫ t

x+h+a
vs

e−2ητ∆g(τ, x, h)|q=1dτ. (1.162)

Следовательно, установившееся решение T∞ записывается как

T∞(x) =
χ0

πωe

(
K0

(
2η|x− h|

vs

)
+K0

(
2η(x+ h+ a)

vs

))
+2χ0a

∫ ∞

x+h+a
vs

e−2ητ∆g(τ, x, h)|q=1dτ.
(1.163)

Найдём приближение для кинетической энергии в виде его асимптотики

дальнего поля (for x≫ h+ a). Вдали от источника, симметричное установившееся

континуальное решение (1.160) может быть получено с использованием следующего

разложения для модифицированной функции Бесселя второго рода большего

аргумента (см. 9.7.2 in [148]):
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K0(λ) = e−λ

√
π

2λ

(
1 +O

(
λ−1
))
, λ→ ∞. (1.164)

Подстановка первого слагаемого в (1.164) в (1.160) приводит к

T∞(x→ ∞) ∼ χ0

2ωe

(√
vs

πη(x− h)
e−

2η(x−h)
vs +

√
vs

πη(x+ h)
e−

2η(x+h)
vs

)
. (1.165)

Нахождение приближения дальнего поля дискретно-континуального решения

для кинетической энергии предполагает нахождение оценка последнего слагаемого

в (1.163), ∆TB. Это можно сделать, используя известные приёмы [155]. но мы

будем оценивать (1.163) другим путём, преставляющимся более простым. Зная

поведении функции ∆g, можно заключить, что, если источник не на границе,

то ∆g при x≫ h+ a представляет интеграл от быстроосциллирующей функции,

поскольку характерные частоты, соответствующие падающей и отражённым волнам,

не близки друг другу (см. раздел 1.1.4). Следовательно, слагаемым c ∆g можно

пренебречь, и приближение для кинетической энергии записывается как

T∞(x)|h̸=0 ≃
χ0

2ωe

(√
vs

πη(x− h)
e−

2η(x−h)
vs +

√
vs

πη(x+ h+ a)
e−

2η(x+h+a)
vs

)
. (1.166)

То есть, при h ̸= 0 дальнее поле кинетической энергии дискретно-континуального

решения несущественно отличается от дальнего поля симметричного контину-

ального решения. При h = 0, оценка (1.166), очевидно, непригодна, поскольку

последним слагаемым в (1.163) пренебрегать нельзя. Однако, можно пренебречь

быстроосциллирующим слагаемым в ∆g, подставляя q = 0. Упрощая (1.94) с

использованием (1.76), запишем следующее выражение для ∆TB:

∆TB ≈ 2χ0a

π

∫ ∞

x+a
vs

e−2ητ
(
−1 + (2x+a)2

2v2sτ
2

)
dτ

4
√

(v2sτ
2 − x2)(v2sτ

2 − (x+ a)2
. (1.167)
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Сделаем замену в интеграле (1.167) τ̃ = τ − x+a
vs

. Тогда, перепишем (1.167) в виде

∆TB ≈ 2χ0a

π
e−

2η(x+a)
vs

∫
∞

0

e−2ητ̃
(
−1 + (2x+a)2

2(vsτ̃+x+a)2

)
dτ̃

4

√(
(vsτ̃ + x+ a)2 − x2

)(
(vsτ̃ + x+ a)2 − (x+ a)2

) .
(1.168)

Раскладывая интегранд формулы (1.168) в точке x = ∞ и пренебрегая слагаемыми

порядка x− 3
2 и выше и, используя тождество, справедливое при a > 0:

∫ ∞

0

e−2ητ̃dτ̃
4
√
vsτ̃(vsτ̃ + a)

= 4

√
2a

v3sη

e
η
ωe

√
πK 1

4

(
η
ωe

)
Γ
(
1
4

) , (1.169)

получим

∆TB ≃
4
√
8χ0a

√
πΓ
(
1
4

) 4

√
a

v3sη
K 1

4

(
η

ωe

)
e−

η
ωe
e−

2ηx
vs

√
x
, x→ ∞. (1.170)

Следовательно, приближение дальнего поля кинетической энергии при источнике

на границе имеет вид

T∞(x)|h=0 ≃
χ0

2ωe

[(√
vs
η
+

2

Γ
(
1
4

) 4

√
8vsa

η
K 1

4

(
η

ωe

)
e−

η
ωe

)
e−

2ηx
vs

√
πx

+

√
vs

πη(x+ a)
e−

2η(x+a)
vs

]
.

(1.171)

Таким образом, получены аналитические выражения для кинетической энергии

в континуальном пределе. В следующем разделе приводится их сравнение с

дискретным решением и численными результатами.

1.2.6 Сравнение аналитических и численных решений

Проиизводится сравнение аналитических результатов для кинетической

энергии, соотсветствующих дискретному (формула (1.158)) и континуальным реше-

ниям (формулы (1.159), (1.163), (1.166) и (1.171)) с соответствующими численными

решениями. Поскольку последние добываются путём, отличающимся от случая,
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рассмотренным в разделе 1.1.5, ниже приводятся детали численного анализа.

Рассмотрим цепочку с двумя свободными концами, состоящую из N частиц.

Следуя [130], введём безразмерные параметры:

ũ
def
= u/a, ṽ

def
= v/vs,

b̃
def
= b/(vs

√
ωe), η̃

def
= η/ωe,

t̃
def
= ωet, T̃

def
= kBT/(mv

2
s).

(1.172)

Тогда, учитывая (1.156), перепишем уравнения (1.114) в виде

dũn = ṽndt̃, n = 0, 1, ..., N − 1,

dṽn = (Fn − 2η̃ṽn) dt̃+ b̃δn,jρj
√
dt̃,

Fn(ũn)
def
= (ũn+1 − ũn)(1− δn,N−1)− (ũn − ũn−1)(1− δn,0),

(1.173)

с нулевыми начальными условиями для безразмерных перемещений и скоростей

частиц. Кинетическая энергия, T̃n, вычисляется через определение (1.28), в котором

математическое ожидание заменяется усреднением по NR реализациям:

T̃n =
1

2NR

NR∑
i=1

(ṽn|i)2, (1.174)

где ṽn|i — скорость частицы в i-ой реализации. Для того чтобы найти скорость

частицы, производится интегрирование уравнений (1.173) с использованием метода,

предложенного в работе [156] для интегрирования уравнений Ланжевена. Шаг

численного интегрирования осуществляется в соответствии со следующей схемой,
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состоящей из пяти шагов, реализуемых последовательно:

ṽn

(
t̃+

∆t̃

2

)
= ṽn(t̃) + Fn

(
ũn(t̃)

) ∆t̃
2
,

ũn

(
t̃+

∆t̃

2

)
= ũn(t̃) + ṽ

(
t̃+

∆t̃

2

)
∆t̃

2
,

ṽn

(
t̃+

∆t̃

2

)
= ṽn

(
t̃+

∆t̃

2

)
e−2η̃∆t̃ + b̃δn,jρj

√
1− e−4η̃∆t̃

4η̃
,

ũn
(
t̃+∆t̃

)
= ũn

(
t̃+

∆t̃

2

)
+ ṽn

(
t̃+

∆t̃

2

)
∆t̃

2
,

ṽn
(
t̃+∆t̃

)
= ṽn(t̃) + Fn

(
ũn
(
t̃+∆t̃

)) ∆t̃
2
,

(1.175)

где ∆t̃ — шаг по времени. В ходе численного моделирования используются

следующие параметры:

∆t̃ = 0.01, b̃ = 1, N = 512, NR = 105. (1.176)

В каждый момент времени генерируется случайное число ρj, распределённое на

отрезке [−
√
3;
√
3], что удовлетворяет условию

⟨ρ⟩ = 0, ⟨ρ2⟩ = 1. (1.177)

Для ускорения расчётов производится параллелизация кода с помощью библиотеки

«OpenMP».

Интегралы, в которых записывается аналитическое решение для дискретного

и континуального решений, вычисляются с использованием метода трапеций. В

частности, установившегося решения в случае наличия вязкого трения вычисля-

ется как неустановившееся (при конечном ωet = 500). Аналитические расчёты

выполнены с использованием программного обеспечения «TAICHI PYTHON» для

их ускорения. Будем рассматривать два случая: когда подвод энергии задаётся вне

границы (например, для j = 5) и на границе.
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Случай отсутствия вязкого трения

Рассмотрим случай, когда вязкое трение отсутствует (η → 0+). Тогда

симметрично-континуальное решение имеет вид:

T (t, x) =
χ0H(vst− |x− ξ|)

πωe
ln
vst+

√
v2st

2 − (x− ξ)2

|x− ξ|

+
χ0H(vst− (x+ ξ))

πωe
ln
vst+

√
v2st

2 − (x+ ξ)2

x+ ξ
,

(1.178)

из которого следует логарифмический рост кинетической энергии во времени. В

свою очередь, дискретно-континуальное решение получается подстановкой η = 0

в уравнении (1.161), что приводит к формуле, в которой первые два слагаемых,

обозначающих вклады от падающей и отражённой волн совпадают с уравнени-

ем (1.178), где x + h заменяется на x + h + a. Дискретное решение получается

подстановкой η = 0 в уравнение (1.158).

Рассмотрим изменение во времени кинетической энергии и влияние свобод-

ной границы на этот процесс. В частности, сравнение аналитического и численного

решений для кинетической энергии на границе представлено на рисунке. 1.11.
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Рис. 1.11: Изменение во времени кинетической энергии на границе в полубес-
конечной цепочке при подводе в точке j = 0 (слева) и j = 5 (справа) при
отсутствии вязкого трения (η → 0+). Показаны дискретное (1.158), дискретно-
континуальное (1.152), (1.153) и симметрично-континуальное (1.178) решения.

Видно, что на малых временах дискретное и дискретно-континуальное ре-
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шения для кинетической энергии на границе растут быстрее, чем симметричное

континуальное решение. (см. рисунок 1.11, справа). Однако, на больших временах

рост дискретного решения существенно замедляется таким образом, что, кажется

стремление этой величины к неизменной во времени величине. Чтобы объяснить

причину такого поведения и определить, действительно ли это стремление к устано-

вившимся решениям или рост решения значительно медленнее логарифмического,

исследуем дискретно-континуальное решение, которое ведёт себя существенно

похоже на дискретное (хотя их установившиеся значения отличаются, см. рис. 1.11,

справа). Анализируется зависимость первых двух слагаемых в (1.161), которая

представлена на рисунке. 1.12. Видно, что, во-первых, после того как волна из

0 50 100 150 200
-1

-0.5

0

0.5

1

1.5

Рис. 1.12: Зависимость дискретно-континуального решения (1.152), (1.153) для
кинетической энергии (синяя линия), ∆TB (красная линия) и сумма вкладов
падающей и отражённой волн (чёрная линия).

точки h = 5a дошла до границы, дискретно-континуальное решение для кинети-

ческой энергии растёт быстрее, чем сумма вкладов от падающей и отражённой

волн из-за ∆TB > 0. Во-вторых, рост кинетической энергии останавливается в

точно такой же момент времени, когда функция ∆TB меняет знак. На больших

временах, абсолютная величина ∆TB растёт во времени похожим образом, как

сумма вышеупомянутых вкладов. Из анализа производных по времени от этой
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суммы и∆TB, заключаем, что абсолютные величины скоростей их изменений равны

друг другу, и, следовательно, полная кинетическая энергия становится постоянной

во времени. Отток энергии (∆TB) обусловлен взаимодействием взаимодействием

волны, дошедшей до границы, и самой границы; то есть, имеет ту же причину, что

антилокализация отражённой волны на границе в случае начального распределения

энергии (см. раздел 1.1.5). Предварительные результаты показывают, что стрем-

ление кинетической энергии к установившимся значениям наблюдается в точках

между той, в которой происходит подвод, и границей (если они не совпадают),

а также то, что кинетическая энергия не растёт вне зависимости от конкретной

точки подвода.

Профили кинетической энергии в фиксированный момент времени показаны

на рисунке 1.13. Из рисунка 1.13 видно, что при подводе энергии в точке j = 0,
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Рис. 1.13: Профили кинетической энергии на границе в полубесконечной цепочке,
подверженной подводу энергии в точках j = 0 (A) и j = 5 (Б) при ωet = 250
в случае отсутствия вязкого трения (η → 0+). Показаны дискретное (1.158),
дискретно-континуальное (1.152), (1.153) и симметричное континуальное (1.178)
решения.

кинетическая энергия вдали от границы растёт существенно медленнее, чем при

подводе в точке j = 5. Чтобы в этом убедиться, исследуем изменение кинетической

энергии в произвольной точке далеко от границы. Сравнение соответствующих

решений представлено на рисунке 1.14. Видно, что в случае подвода в точке j = 0,



76

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8
Discrete

Numerical

Discrete-continuum

Symmetrical continuum

A

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8
Discrete

Numerical

Discrete-continuum

Symmetrical continuum

Б

Рис. 1.14: Изменение кинетической энергии в 50-й частице в полубесконечной
цепочке, подверженной подводу энергии в точках j = 0 (A) и j = 5 (Б) в
случае отсутствия вязкого трения (η → 0+). Представлены дискретное (1.158),
дискретно-континуальное (1.152), (1.153) и симметричное континуальное (1.178)
решения.

кинетическая энергия вдали от границы не растёт на больших временах и стремится

к некоторому установившемуся значению (см. рисунок 1.14A), в то время как

кинетическая энергия в точках далеко от границы претерпевает рост (см. рису-

нок 1.14Б). Проанализировав похожим образом поведение кинетической энергии в

ряде точек, заключаем, что при подводе энергии на границе кинетическая энергия

в любой фиксированной точке стремится к постоянной во времени величине.

Из рисунков 1.11, 1.13, 1.14 также заключаем, что подвод энергии при

отсутствии вязкого трения корректно описывают только дискретное и дискретно-

континуальное решения.

Влияние вязкого трения

При наличии вязкого трения (η > 0) ожидается, что кинетическая энер-

гия во всех точках будет стремится к установившимся значениям, что следует

из формулы (1.158). Поскольку поведение во времени кинетической энергии в

фиксированной точке очень похоже на то, как оно осуществляется в случае отсут-

ствия вязкого трения с той лишь разницей, что установившееся значение будет,
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очевидно, меньше из-за трения, интерес представляет рассмотрение профилей уста-

новившегося решения для кинетической энергии. Распределение в пространстве

установившейся кинетической энергии при подводе в точке j = 5 представлено на

рисунке 1.15. Видно, что, во-первых, вдали от границы дискретно-континуальное и
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Рис. 1.15: Установившееся поле кинетической энергии в полубесконечной це-
почке Гука, подверженной подводу в точке j = 5 при η/ωe = 0.02. Показаны
дискретное (1.158), дискретно-континуальное (1.152), (1.153) симметричное кон-
тинуальное (1.159) решения и асимптотика дальнего поля (1.166).

симметричное континуальное решения между собой не отличаются (в масштабе

рисунка). Однако, вблизи границы дискретно-континуальное решение описыва-

ет поле кинетической энергии более точно, чем симметричное континуальное

решение. Приближение дальнего поля описывает (1.166) поле кинетической энер-

гии (как дискретно-континуальное, так и симметрично-континуальное решения) с

приемлемой точностью при x/a > 30.

Другая ситуация возникает при подводе на границе (см. рисунок 1.16). Видно,

что поведение симметричного континуального решения для установившегося

поля кинетической энергии качественно отличается от дискретно-континуального

решения (которое гораздо более точно описывает поле). В отличие от случая подвода

энергии вне границы, качественное отличие вышеназванных решений наблюдается
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Рис. 1.16: Установившееся поле кинетической энергии в полубесконечной це-
почке Гука, подверженной подводу в точке j = 0 при η/ωe = 0.02. Показаны
дискретное (1.158), дискретно-континуальное (1.152), (1.153) симметричное кон-
тинуальное (1.159) решения и асимптотика дальнего поля (1.171).

не только вблизи границы, но и во всех точках. Приближение дальнего поля (1.171)

описывает поле кинетической энергии с приемлемой точностью при x/a > 60. На

рисунке 1.16 также можно наблюдать резкое изменение дискретно-континуального

решения для кинетической энергии вблизи границы, убедительное объяснение

чему на сегодняшний день не найдено.

1.3 Результаты главы 1
Предложено аналитическое описание переноса энергии упругими волнами

в одномерной линейной цепочке со свободной границей. Выведены формулы,

описывающие изменение кинетической энергии в континуальном приближении в

виде суммы вкладов падающей и отражённой волн. Показано, что любое начальное

распределение энергии приводит к её затуханию вблизи границы на больших

временах, которое происходит значительно быстрее, чем аналогичное решение для

бесконечной цепочки.

Получено аналитическое решение в континуальном приближении, описываю-

щее перенос энергии упругими волнами в одномерной полубесконечной линейной
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цепочке со свободной границей и линейным вязким трением при стохастическом

воздействии в виде белого шума. Показано, в частности, что при отсутствии трения

математическое ожидание кинетической энергии для частиц вблизи границы на

больших временах стремится к константе, а вдали от границы — неограниченно

растёт (в отличие от бесконечной цепочки, в которой энергии всех частиц растут).

Симметричное континуальное решение (то есть решение, которое в беско-

нечной цепочке было бы симметричным относительно границы) может описывать с

приемлемой точностью только поле кинетической энергии вдали точки внезапного

подвода, если он происходит вне границы или в точках вдали от границы при

мгновенном возмущении (то есть при начальном распределении энергии в про-

странстве). Во всех остальных случаях это описание теряет точность при сравнении

с дискретным (точным) и численным решениями. Таким образом, описание процес-

са переноса энергии в полубесконечной цепочке симметричным континуальным

решением, которое, в свою очередь, получается в том числе в рамках кинетической

теории без столкновения, вообще говоря, непригодно.

Перенос энергии в континуальном пределе с приемлемой точностью опи-

сывают континуальное (при начальном распределении энергии) и дискретно-

континуальное решения (как при начальном распределении энергии, так и при её

подводе). Оба решения выведены с использованием подхода через асимптотиче-

скую оценку дискретного решения задачи динамики решётки, предложенным в

работе [133] и учитывающим взаимодействие падающей волны, дошедшей до гра-

ницы, с самой границей. О другом подходе континуализации дискретного решения,

с помощью которого возможно получение корректного аналитического описания

переноса энергии в решётках с пространственной неоднородностью, в настоящее

время неизвестно.

У любого типа решения для кинетической энергии в континуальном преде-

ле есть недостаток: сингулярность его или его производной либо на фронтах (в

случае мгновенного возмущения), или его сингулярность в точке подвода (при

внезапном точечном подводе энергии). Если в первом случае решение на фронтах
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можно уточнить, приводя для него отдельную асимптотику, то для второго случая

способа устранить сингулярность на сегодняшний день не найдено. Другой задачей,

представляющей интерес для дальнейшего исследования, является перенос энер-

гии либо в более сложных одномерных системах (с упругим либо вязко-упругим

основанием, несколькими подрешётками и т.д.), либо в решётках большей раз-

мерности. Представляется, что развитие теории может послужить шагом к более

точному описанию экспериментов, связанных с переносом энергии (см., в частно-

сти, [77, 76, 95]) в кристаллических твёрдых телах с учётом эффектов, связанных

со взаимодействием со свободной поверхностью (в частности, TTG [295, 296]).
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Глава 2. Подвод энергии в полубесконечную цепочку при

силовом и кинематическом нагружении на границе

Введение
Настоящая глава посвящена исследованию нестационарных процессов, свя-

занных с динамикой дискретных сред (или систем), находящихся под воздействием

внешних сил. Данная проблема представляет значительный интерес как с точки

зрения фундаментальных исследований, так и с точки зрения прикладных задач. В

частности, изучение реакции дискретных сред на внешние воздействия находит

широкое применение в областях механики разрушений [157], сейсмики [158],

акустических метаматериалов [161, 163, 164, 165], в которых внешние воздей-

ствия могут иметь механическую, световую или магнитную природу, а также с

моделями (на макроуровне) динамики поездов (см., в частности, [159]), гусенич-

ных цепей [160], грунтов [162], бурильных колонн [141]. Подобные задачи также

связаны с экспериментами, связанными, в частности, с воздействием лазера на

кристаллическую решётку [138].

Насколько известно, одной из первых работ, посвящённых динамике дис-

кретных систем под внешним воздействием, является статья [166], в которой

Н.Е. Жуковский представил решение задачи динамики поезда, моделируемого

системой масс, связанных пружинами, при наличии постоянной во времени силы

тяги, действующей на конце этой системы. Похожие задачи в контексте данной

проблемы для более сложных моделей поездов рассматривались в статье [159]. В

последующих работах исследовалась динамика электрических цепей под действи-

ем внешней периодической ЭДС, в частности, Л. И. Мандельштамом [167], Э. А.

Гильемином [168], Л. Э. Пайпсом [169]. В последних двух работах предложены

стационарные решения (при t→ ∞) относительно силы тока в контуре цепи, соот-

ветствующие устоявшимся колебаниям только с частотой внешнего воздействия. В

работе [112] П. Хеммером найдено стационарное решение задачи динамики беско-
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нечной моноатомной линейной цепочки (цепочки Гука) относительно перемещения

частицы. Это же решение было переполучено Такизавой и Кобаяси в работе [170].

Метод, с использованием которого найдено стационарное решение в работе [112],

заключается в разделении точного решения, записанного в интегральной форме,

на вклады от вынужденных и собственных колебаний цепочки и последующей

оценке точного решения при t→ ∞. Соответственно, окончательное решение в

замкнутой форме соответствует только колебаниям с частотой возмущения. Одна-

ко, в той же работе показано, что возмущение с частотой, равной максимальной

частоте цепочки, приводит к росту решения пропорционально корню из времени.

В работе [193] получены стационарные решения для полубесконечной линейной

цепочки, подверженной силовому (при известной внешней силе на границе) и

кинематическому (при известном законе движения на границе) нагружениям при

частоте, находящейся в полосе непропускания. Тот же результат был получен в

статье [201] для цепи связанных колебательных контуров при учёте потерь энергии

и наличии входной силы тока. В работе [194] получено стационарное решение для

полубесконечной цепочки, с изотопным дефектом (частицей другой массы) на

границе, подверженной при этом силовому нагружению. Решение задачи динамики

получено при частоте нагружения как в полосе непропускания, так и в полосе

пропускания. Что касается нелинейных цепочек, задачи их реакции на внешние

воздействия рассматривались, в частности, в работах А. Мелькера [171], Р. Саби-

рова [172], В. Захватаева [173], С. Беклемишева [174], однако в них конкретные

вопросы, связанные с подводом энергии, не поднимались. Что касается линейных

решёток, несмотря на результаты в работах [198, 199, 200], где получены решения

задач в интегральной форме, а также в работах [194, 112, 201, 193], где удавалось

получить приближённое решение задачи динамики (в частных случаях, о которых

шла речь ранее), вопрос, связанный с нахождением нестационарного решения,

т.е. решения, соответствующего переходному процессу задолго до установления

стационарных колебаний, остаётся открытым. Разрешение этого вопроса важно

для понимания того, почему при определённой частоте происходит подвод энергии
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тем или иным образом.

Как известно, подвод энергии в линейную дискретную среду может происхо-

дить только на частотах, заключённых внутри полос пропускания, определяемых

дисперсионным соотношением. Однако в ангармонических (нелинейных) решётках

энергия может подводиться на частоте и в полосе непропускания. В работах А.

Косевича [178], А. Овчинникова [176], А. Сиверса [175], С. Флаха [177] показано,

что нелинейные взаимодействия в дискретных средах приводят к возникнове-

нию внутренних локализованных мод (именуемых также дискретными бризерами

или самолокализованными модами). В частности, в работах [180, 181] М. Сато

и Е. Корзниковой показано, что перенос энергии, индуцированный внутренними

локализованными модами, осуществляется на их частотах, которые могут быть

как ниже или выше полосы пропускания, так и в полосе непропускания между

полосами пропускания. Ф. Жениет и Дж. Леон экспериментально (на системе

самодельных математичеcких маятников) обнаружили явление супратрансмиссии:

внезапного увеличения потока энергии в дискретную среду при возбуждении

на частоте в полосе непропускания и по достижении некоторого критического

значения амплитуды возбуждения. В дальнейшем то же явление было обнаружено

для других систем, в частности, Ё. Ватанабе [184, 185] и А.И. Чередниченко, П.

Захаровым [187] (численный эксперимент).

Теоретическому исследованию распространению энергии, индуцированно-

му супратратрансмиссией, посвящено множество работ. Как правило исследу-

ется условие прохождение волны внутренними локализованными модами при

супрантрансмиссии. Возможно, первой работой является [186], где показано, что

супратрансмиссия сопровождается резким увеличением закачиваемой энергии.

Этот процесс исследован при помощи уравнения синус-Гордона, которое стало

в дальнейшем модельным уравнением для описания супратрансмиссии (в част-

ности, в контактах Джозефсона) как в дискретных (см., в частности, [188]), так

и в сплошных (см., в частности, [190]) средах. Также явление супратрансмис-

сии рассматривалось в системах, удовлетворяющих одномерному нелинейному
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уравнению Шрёдингера, электрических решётках, цепочках β—Ферми-Паста-

Улама-Цингу (ФПУЦ) [202, 189] и в виброударных цепочках [203].

Другой задачей, исследуемой довольно редко, является изменение во времени

энергии, закачиваемой в цепочку при частоте как в полосе пропускания, так и

в полосе непропускания. В работе [191] этот процесс был продемонстрирован в

бесконечной цепочке с нелинейным упругим основанием для случаев как кинемати-

ческого, так и силового периодических нагружений. Там же показано, что скорость

подвода энергии при малых амплитудах нагружения неотличима от аналитического

решения в линейном приближении [192].

В диссертации исследуется влияние границы, находящейся под периоди-

ческим нагружением, на скорость подвода энергии. Некоторые результаты по

вышеупомянутой тематике были получены в работе [193] для кинематического

нагружения (численно) и в [194] для силового нагружения в линейном приближении.

Здесь рассмотрим влияние слабой нелинейности на скорость подвода энергии. В

разделе 2.1 рассматривается силовой подвод, а именно, посредством нагружения

на границе внешней периодической силой с постоянной во времени амплитудой.

Для поиска нулевого приближения задача решается в линейном приближении:

находится приближённое решение для полной энергии, закачиваемой в полубеско-

нечную цепочку Гука на больших временах, для вычисления которой используется

подход, предложенный в [192]. Для объяснения физического смысла скорости

закачки энергии при той или иной частоте нагружения исследуется нестационар-

ное решение задачи динамики цепочки Гука в замкнутой форме, получаемое с

использованием метода стационарной фазы. Далее, в диссертации предлагается

подход к нахождению приближённого решения с учётом слабой нелинейности, где

используется вышеупомянутое нулевое приближение — решение линейной задачи.

Обосновывается предположение о причине внезапного роста энергии, происходя-

щего при частоте нагружения на частоте отсечки и выше неё (супратрансмиссия).

В разделе 2.2 рассматривается кинематический подвод энергии: при известном

перемещении границы по периодическому закону с постоянной во времени ампли-
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тудой. Здесь, как и для случая с силовым нагружением, нулевое приближение для

полной энергии в линейном приближении используется для оценки влияния слабой

нелинейности на скорость закачки энергии.

Результаты главы опубликованы в работах [195, 196].

2.1 Подвод при силовом нагружении на границе
2.1.1 Постановка задачи

Рассматриваются вынужденные колебания полубесконечной цепочки Ферми-

Паста-Улама-Цингу [204, 205] с кубической нелинейностью (β—ФПУЦ). Цепочка

состоит из одинаковых частиц массой m и имеет один конец, находящийся под

нагружением внезапной периодической силой с амплитудой F0 и частотой Ω (рису-

нок 2.1). Уравнения динамики имеют вид

m m m m m

c, β c, β c, β c, β

F0 sin(Ωt)H(t)

Рис. 2.1: Полубесконечная цепочка, подверженная силовому нагружению на грани-
це.

u̇n = vn,

mv̇0 = c(u1 − u0) + β(u1 − u0)
3 + F0 sin(Ωt)H(t),

mv̇n = c(un+1 − 2un + un−1) + β
(
(un+1 − un)

3 − (un − un−1)
3
)
, n ∈ N,

(2.1)

где un и vn—перемещение и скорость частицы n соответственно; c и β ≥ 0—линей-

ная и нелинейная силовые константы соответственно. Межатомное взаимодействие

полагается слабо нелинейным, то есть

βF 2
0

c3
≪ 1. (2.2)

Начальные условия для перемещений и скоростей частиц полагаются нулевыми:

un = 0, u̇n = 0. (2.3)
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Стоит отметить, что потенциал взаимодействия β—ФПУЦ не является реалистич-

ным, хотя взаимодействие им регулярно рассматривается для оценки влияния

нелинейности на динамические процессы и, по этой причине, рассматривается

в настоящей главе. Более того, динамика цепочки, удовлетворяющая уравнени-

ям (2.1) при силовом нагружении и (2.101) при кинематическом нагружении (см.

раздел 2.1.5), годится для описания экспериментов [184, 185], где в качестве экс-

периментальной установки предложена цепочка из тел, соединённых пружинками,

жёсткость которых аппроксимируется линейно-кубическим полиномом.

Целью исследования подвода энергии в цепочку является нахождение при-

ближённого выражения для полной энергии, закачиваемой на больших временах.

Для того чтобы найти нулевого приближение вышесформулированной задачи,

приведём её решение в линейном приближении (β = 0).

2.1.2 Точное решение для скоростей частиц в линейной цепочке

Перепишем постановку задачи (2.1), (2.3) относительно цепочки Гука следу-

ющим образом:

v̇n = ω2
e(un+1 − un)− ω2

e(un − un−1)(1− δn,0)− 2ηvn +
F0

m
sin(Ωt)H(t)δn,0,

ωe =
√
c/m,

(2.4)

гдеωe —элементарная частота колебаний атома; η—коэффициент вязкости на еди-

ницу массы. Здесь в уравнение движения (2.4) вводится диссипативное слагаемое,

−2ηvn, для того чтобы из полученного решения задачи с учётом диссипации перей-

ти к пределу (η → 0+, в соответствии с принципом предельного поглощения [208]).

Начальные условия (2.3) перепишем в обобщённом смысле [142]:

un|t<0 = 0. (2.5)

Уравнения (2.4) описывают вынужденные колебания полубесконечной цепочки

Гука с синусоидальной внешней силой на конце. Задача, соответствующая этой про-
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блеме, была рассмотрена в литературе [198, 199, 200]. Однако, решение, полученное

в вышеперечисленных работах, громоздко. Для поиска решения уравнений (2.4)

воспользуемся прямым и обратным дискретными косинус-преобразованиями (фор-

мулы (1.21), (1.22) соотвественно). Применяя эти преобразования к уравнениям (2.4)

и (2.5), получим следующее уравнение относительно û:

¨̂u+ 2η ˙̂u+ ω2û =
F0

m
sin(Ωt)H(t) cos

θ

2
, ω(θ)

def
= 2ωe

∣∣∣ sin θ
2

∣∣∣, (2.6)

где ω(θ) — дисперсионное отношение для гармонической цепочки, соответствую-

щее полосе пропускания, с начальными условиями

û|t<0 = 0. (2.7)

Решение уравнения (2.6) с начальными условиями (2.7) имеет вид

û =
F0

m
H(t) cos

θ

2

(
e−ηt√
ω2 − η2

sin
(
t
√
ω2 − η2

))
∗ sin(Ωt), (2.8)

где ∗— символ интеграла Дюамеля (1.141), откуда

û = H(t) (ûω + ûΩ) cos
θ

2
, (2.9)

ûω =
F0Ω

√
4η2(ω2 − η2) + (Ω2 − ω2 + 2η2)2

m((Ω2 − ω2)2 + 4η2Ω2)
√
ω2 − η2

e−ηt sin
(
t
√
ω2 − η2 + ϕ1

)
, (2.10)

ûΩ =
F0 sin(Ωt− ϕ2)

m
√

(Ω2 − ω2)2 + 4η2Ω2
, (2.11)

ϕ1(θ) = arccos

(
Ω2 − ω(θ)2 + 2η2√

4η2(ω(θ)2 − η2) + (Ω2 − ω(θ)2 + 2η2)2

)
, (2.12)

ϕ2(θ) = arccos

(
ω(θ)2 − Ω2√

(Ω2 − ω(θ)2)2 + 4η2Ω2

)
. (2.13)
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Применяя обратное дискретное косинус-преобразование к производной по времени

от (2.9), получим следующее точное выражение для скорости частицы:

vn = vωn + vΩn , (2.14)

vωn =
H(t)

π

∫ π

−π

˙̂uω(θ) cos
(2n+ 1)θ

2
cos

θ

2
dθ, (2.15)

vΩn =
H(t)

π

∫ π

−π

˙̂uΩ(θ) cos
(2n+ 1)θ

2
cos

θ

2
dθ, (2.16)

записанное в интегральной форме. Уравнение (2.14) представляет собой два слага-

емых. Одно, vΩn , соответствует стационарному решению: вклад от вынужденных

колебаний с частотой Ω. Другое, vωn , соответствует собственным затухающим

колебаниям. Выражение (2.14) в дальнейшем будет использовано для вычисления

полной энергии, закачиваемой в цепочку (в пределе η → 0+). Однако точное

решение для скоростей частиц в его интегральном представлении не позволяет

полноценно понять характер распространения волн в цепочку (что необходимо

для понимания механизма подвода энергии). Следовательно, ниже производится

нахождение приближённого решения для скорости частиц на больших временах.

2.1.3 Приближённое решение для скоростей частиц в линейной цепочке

Для нахождения приближённого решения будем придерживаться следующего

плана:

1. Вклад от вынужденных колебаний, vΩn , вычисляется точно в пределе (η → 0+).

2. Вклад от собственных колебаний, vωn , записывается в виде суммы вклада

от сингулярной (в пределе η → 0+) точки, оцененного при ωet → ∞ и

континуализованного решения (оценка вклада vωn на подвижном фронте с

использованием подхода, предложенного в работе [134] для задач динамики

цепочек при ωet→ ∞ методом стационарной фазы).
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Вклад от вынужденных колебаний

Для начала рассмотрим вклад vΩn и упростим для него выражение, используя

следующие приближения, справедливые для η/ωe → 0:

ϕ2 ≈

π, ω < Ω;

0, ω > Ω,
,

√
Ω2 − ω2 ± 2iηΩ ≈

√
Ω2 − ω2 ± iηΩ√

Ω2 − ω2
, (2.17)

откуда следует

vΩn ≈ −F0Ωcos(Ωt)H(t)

m
(In + In+1 + c.c.) , In =

1

4π

∫ π

−π

einθdθ

Ω2 − ω2 − iηΩ
, (2.18)

где символ c.c. означает комплексно-сопряжённое слагаемое. Интеграл In сводится

к интегралу по единичной окружности через подстановку z = eiθ. Следовательно,

In = − i

4π

∮
|z|=1

zndz

ω2
ez

2 + (Ω2 − 2ω2
e − iηΩ)z + ω2

e

. (2.19)

Перепишем (2.19) в виде

In = − i

4πω2
e(z1 − z2)

(∮
|z|=1

zndz

z − z1
−
∮
|z|=1

zndz

z − z2

)
, (2.20)

z1,2 =
2ω2

e − Ω2 + iηΩ± i
√
Ω
√
Ω− iη

√
4ω2

e − Ω2 + iηΩ

2ω2
e

, (2.21)

где z1 и z2 — нули знаменателя интегранда в уравнении (2.19), т.е., полюса. В

пределе η → 0+ их можно записать в виде

z1,2 = 1− Ω2

2ω2
e

±
iΩ
√
4ω2

e − Ω2

2ω2
e

+ 0i. (2.22)

Рассмотрим случай, когда частота Ω находится внутри цепочки, то есть 0 <

Ω < 2ωe. В этом случае внутри круга |z| < 1 располагается только полюс z2. Тогда
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первое слагаемое в (2.20) равно нулю и, таким образом, имеем

In =
izn2

2Ω
√
4ω2

e − Ω2
=

(−1)ne2iφn

−2iΩ
√

4ω2
e − Ω2

, φ
def
= arccos

Ω

2ωe
. (2.23)

Рассмотрим случай Ω > 2ωe, т.е., когда частота Ω располагается в полосе

непропускания. Тогда уравнения для корней z1,2 имеют вид

z1,2 = 1−
Ω2 ± Ω

√
Ω2 − 4ω2

e

2ω2
e

. (2.24)

Поскольку в круге |z| < 1 располагается только корень z2, следовательно, вычет

учитывается только в нём. Следовательно, выражение для In имеет вид

In =
zn2

2Ω
√
Ω2 − 4ω2

e

=
(−1)ne−γn

2Ω
√

Ω2 − 4ω2
e

, (2.25)

γ
def
= − ln

(
Ω2 − Ω

√
Ω2 − 4ω2

e

2ω2
e

− 1

)
= 2arccosh

Ω

2ωe
. (2.26)

Здесь γ — это коэффициент затухания (мнимая часть комплексного волнового

числа, соответствующего дисперсионному соотношениюдля полосынепропускания

в цепочке Гука [34]), определённый при частоте Ω.

Рассмотрим Ω = 2ωe. Тогда интегралы In и Īn соответственно записываются

как

In = − i

4πω2
e

∮
|z|=1

zndz

(z + 1− 0i)2
= 0, (2.27)

Īn = − i

4πω2
e

∮
|z|=1

z−ndz

(z + 1 + 0i)2
=

(−1)(n+1)n

2ω2
e

. (2.28)

Здесь при вычислении In и Īn использовались тождества [206]

1

(z ± 0i)2
= ±iπδ′(z) +

1

z2
, (2.29)

при подстановке которых в (2.27) и (2.28) второе слагаемое интегрируется в смысле
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главного значения. Подставляя (2.23) в (2.18) с последующими преобразованиями,

получим

vΩn |η→0+ =
(−1)n+1F0

mωe
T2n+1

(
Ω

2ωe

)
cos(Ωt)H(t), 0 < Ω ⩽ 2ωe, (2.30)

где Tn
def
= cos(n arccos x)— полином Чебышева первого рода степени n. Подстав-

ляя (2.25) в (2.18) с последующими преобразованиями, получим

vΩn |η→0+ =
(−1)n+1F0(1− e−γ)

m
√
Ω2 − 4ω2

e

e−γn cos(Ωt)H(t), Ω > 2ωe. (2.31)

Стоит отметить, что формула (2.31) может быть также получена через дифферен-

цирование по времени уравнения (34) в [194] или уравнения (8) в [193] с учётом

силового подвода. Наконец, для Ω = 2ωe выражение (2.18) можно переписать в

виде

vΩn ≈ −F0Ωcos(Ωt)H(t)

m

(
In + In+1 + Īn + Īn+1

)
, (2.32)

в котором в пределе η → 0+ In и Īn берутся соответственно из (2.27) и (2.28).

Таким образом, имеем в окончательном виде

vΩn |η→0+ =
(−1)n+1F0

mωe
cos(2ωet)H(t), (2.33)

в самом деле, удовлетворяющим уравнению (2.30).

Итак, получены точные выражения для вклада от вынужденных колебаний в

скорость частицы в бездиссипативном пределе η → 0+. При частоте нагружения,

лежащей в полосе непропускания, этот вклад (формула (2.31)) соответствует неод-

нородной волне, затухающей на удалении от границы. При частоте нагружения,

лежащей в полосе пропускания, вклад (формула (2.30)) соответствует распростра-

няющейся бесконечной волне с постоянной во времени амплитудой. Поскольку

бесконечные волны не могут быть индуцированы точечным источником возмуще-

ния, в дальнейшем на вклад (2.30) накладывается ограничение при построении
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решения для перемещения в замкнутой форме. Физический смысл вклада (2.33)

будет в дальнейшем упомянут.

Вклад от собственных колебаний

Как ранее было упомянуто, вклад от собственных колебаний в скорость

частицы, vωn , может быть асимптотически оценён на больших временах (Ωt≫ 1).

Перепишем (2.15) в виде

vωn = vωn,cr + vωn,st, (2.34)

где vωn,cr и vωn,st будут именоваться вкладом от сингулярной точки и континуализо-

ванным решением соответственно.

Вклад от сингулярной точки

Используя следующие приближения, справедливые при η → 0+:

ϕ1 ≈

0, ω < Ω;

π, ω > Ω,
(2.35)

√
ω2 − η2 ≈ ω,

√
4η2(ω2 − η2) + (Ω2 − ω2 + 2η2)2 ≈ |Ω2 − ω2|, (2.36)

перепишем уравнение (2.15) с учётом η/ωe ≪ 1 следующим образом:

vωn =
2F0Ωe

−ηtH(t)

mπ

∫ π

0

(Ω2 − ω(θ)2) cos(ω(θ)t)

(Ω2 − ω(θ)2)2 + 4η2Ω2
cos

(2n+ 1)θ

2
cos

θ

2
dθ. (2.37)

Перепишем (2.37) в виде интеграла по частотам:

vωn =
2F0Ωe

−ηtH(t)

mωeπ

∫ 2ωe

0

(Ω2 − ω2) cos(ω(θ)t)

(Ω2 − ω2)2 + 4η2Ω2
cos

(
(2n+ 1) arcsin

ω

2ωe

)
dω.

(2.38)

Из (2.38) видно, что наибольший вклад при малой диссипации в интеграл до-

стигается в окрестности при Ω = ω. Рассмотрим 0 < Ω < 2ωe. В этом случае

введём замену ϵ = Ω− ω и преобразуем (2.38), используя следующие разложения
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в окрестности ϵ = 0:

Ω2 − ω2 = 2Ωϵ+O

((
ϵ

ωe

)2
)
, (2.39)

cos

(
(2n+ 1) arcsin

ω

2ωe

)
= cos

(
(2n+ 1) arcsin

Ω

2ωe

)
+O

(
ϵ

ωe

)
. (2.40)

Перепишем (2.38) в виде

vωn ≈
F0e

−ηtH(t)T2n+1

(√
1− Ω2

4ω2
e

)
mωeπ

[
cos(Ωt)

∫ Ω

Ω−2ωe

ϵ cos(ϵt) dϵ

ϵ2 + η2

+ sin(Ωt)

∫ Ω

Ω−2ωe

ϵ sin(ϵt) dϵ

ϵ2 + η2

]
.

(2.41)

Введём функцию vωn,cr, такую, что

vωn = vωn,cr|Ωt≫1, η→0+. (2.42)

Устремляя в (2.41) ϵt → ∞ и, используя следующие тождества, справедливые

при λ̂ > 0: ∫ ∞

−∞

x sinx

x2 + λ̂2
dx = e−λ̂π,

∫ ∞

−∞

x cosx

x2 + λ̂2
dx = 0, (2.43)

запишем выражение для vωn,cr в виде

vωn,cr =
F0T2n+1

(√
1− Ω2

4ω2
e

)
mωe

sin(Ωt). (2.44)

Рассмотрим Ω = 2ωe. Подставим η = 0 в (2.38) и сделаем замену ϵ = 2ωe−ω.

Используя разложения

Ω2 − ω2 = 4ωeϵ+O

((
ϵ

ωe

)2
)
, (2.45)
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cos

(
(2n+ 1) arcsin

ω

2ωe

)
= (−1)n(2n+ 1)

√
ϵ

ωe
+O

((
ϵ

ωe

) 3
2

)
, (2.46)

перепишем (2.38) в виде

vωn ≈ (−1)nF0H(t)(2n+ 1)

mπ
√
ω3
e

[
cos(2ωet)

∫ 2ωe

0

cos(ϵt)dϵ√
ϵ

+ sin(2ωet)

∫ 2ωe

0

sin(ϵt)dϵ√
ϵ

]
.

(2.47)

Устремляя в (2.47) ϵt→ ∞, и, используя тождества

∫ ∞

0

cos x dx√
x

=

√
π

2
,

∫ ∞

0

sin xdx√
x

=

√
π

2
, (2.48)

окончательно запишем (2.47) в виде

vωn,cr ≈
(−1)nF0(2n+ 1)

m
√
2πω3

et
(cos(2ωet) + sin(2ωet)) =

(−1)nF0(2n+ 1)

m
√
πω3

et
sin
(
2ωet+

π

4

)
.

(2.49)

В случае Ω > 2ωe формула (2.38) в пределе η → 0+ не содержит сингулярных

точек, и, следовательно, вклад от сингулярной точки равен нулю.

Континуализованное решение

Подставим в выражение (2.15) η = 0 и перепишем его в виде

vωn =
F0ΩH(t)

m
(I1 − I2 + I3 + I4) , (2.50)

I1,3 =
1

π

∫ π

0

cos(ω(θ)t± nθ)

Ω2 − ω(θ)2
cos2

θ

2
dθ, I2,4 =

1

π

∫ π

0

sin(ω(θ)t± nθ)

Ω2 − ω(θ)2
cos

θ

2
sin

θ

2
dθ.

(2.51)

Будем оценивать интегралы I1,2,3,4 на подвижном фронте, для этого приведём их к

структуре интеграла Фурье:

Ĩ =

∫
f(θ)eiφ(θ)tdθ. (2.52)

Следуя [133], положим n = wωet, где w— безразмерная постоянная во времени
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плотность скорости точки наблюдения. Будем полагать, что n может теперь при-

нимать вещественнозначные неотрицательные значения. Рассмотрим следующие

интегралы:

Ĩ1± =
1

π

∫ π

0

f1(θ)e
iφ±(θ)ωetdθ, Ĩ2± =

1

π

∫ π

0

f2(θ)e
iφ±(θ)ωetdθ, (2.53)

f1(θ) =
cos2

θ

2
Ω2 − ω(θ)2

, f2(θ) =
cos

θ

2
sin

θ

2
Ω2 − ω(θ)2

, φ±(θ) = 2 sin
θ

2
± wθ. (2.54)

Для их оценки воспользуемся методом стационарной фазы. Стационарные точки,

θ̂, удовлетворяют условию
dφ±

dθ

∣∣∣
θ=θ̂

= 0, (2.55)

из которого следует неравенство

0 < w < 1, (2.56)

являющееся областью определения интеграндов в уравнениях (2.53). Так же как

отрицательные стационарные точки, точка θ̂ = 2(π − arccosw) не принадлежит

отрезку интегрирования. Следовательно, интегралы Ĩ1+, Ĩ2+, а значит, I1 и I2 имеют

порядок O((ωet)
−∞). Остаётся к рассмотрению точка θ̂ = 2arccosw. Тогда

φ−(θ̂) = 2
√

1− w2 − 2w arccosw,
d2φ−

dθ2

∣∣∣
θ=θ̂

= −1

2

√
1− w2 < 0. (2.57)

Так как стационарная точка не является вырожденной, для оценки интегралов Ĩ1−
и Ĩ1− воспользуемся формулой для главного члена асимптотики интеграла Фу-

рье (2.52):

Ĩ ∼ Ĩ∞
def
=

√√√√ 2π∣∣∣d2φdθ2 |θ=θ̂

∣∣∣ωet
f(θ̂)e

i

(
φ(θ̂)t+π

4 sgn
d2φ

dθ2

∣∣∣
θ=θ̂

)
, (2.58)

где символ ∼ обозначает асимптотически эквивалентную функцию при t → ∞.
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Перепишем формулу (2.50) в виде

vωn =
F0ΩH(t)

m

(
ℜ(̃I1−) + ℑ(̃I2−)

)
. (2.59)

Введём функцию vstat(w, t), такую, что

vstat(w, t)
def
=
F0ΩH(1− w)

m

(
ℜ(̃I∞1−) + ℑ(̃I∞2−)

)
, (2.60)

где Ĩ∞1− и Ĩ∞2− определяются как

Ĩ1− =
1

π

√√√√ 2π

ωet
∣∣∣d2φ−

dθ2

∣∣
θ=θs

∣∣∣f1(θs)e
i

(
φ−(θs)ωet+

π
4 sgn

d2φ−
dθ2

∣∣∣
θ=θs

)

=
2√

πωet
√
1− w2

w2

Ω2 − 4ω2
e(1− w2)

ei((2
√
1−w2−2w arccosw)ωet−π

4 ),

(2.61)

Ĩ2− =
2√

πωet
√
1− w2

w
√
1− w2

Ω2 − 4ω2
e(1− w2)

ei((2
√
1−w2−2w arccosw)ωet−π

4 ). (2.62)

Запись (2.60) через функцию Хевисайда объясняется отсутствием стационарных то-

чек приw > 1. Подставляя (2.61) и (2.62) в (2.60) с дальнейшими преобразованиями,

получим

vstat(w, t) =
2wF0ΩH(1− w)

m
√
πωet

√
1− w2 (Ω2 − 4ω2

e(1− w2))
sin (W(w)t+ ψ) , (2.63)

W(w)
def
= 2ωe

(√
1− w2 − w arccosw

)
, ψ(w)

def
= arcsinw − π

4
, (2.64)

где подW(w)— понимается характерная частота цепочки Гука.

Таким образом, вклад vωn,st определяется через обратную замену w = n/(ωet),

а именно:

vωn,st
def
= vstat

(
n

ωet
, t

)
. (2.65)

Стоит отметить, что асимптотика скорости при w = 1 находится с применением
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другого метода, отличного от рассмотренного выше (см. [207, 134]).

Построение приближённого решения для поля скоростей

Используя найденные вклады, построим приближённое решение для скоро-

стей частиц в зависимости от частоты нагружения Ω. Для проверки формул

проводится численное интегрирование уравнений (2.4) в безразмерном виде

при η = 0 с нулевыми начальными условиями методом leap-frog с шагом по

времени ωe∆t = 0.02. Объектом численного моделирования являлась цепочка,

состоящая из 5 · 103 частиц и имеющая один конец (подверженный силовому

нагружению) и один фиксированный конец (граничное условие для правого конца

не играет роли при достаточно большом количестве частиц).

При частоте нагружения, находящейся в полосе непропускания (Ω > 2ωe),

решение для скорости частицы запишем следующим образом:

vn|Ω>2ωe
≈ vωn,st + vΩn , (2.66)

где vωn,st и vΩn определяются выражениями (2.65) и (2.31) соответственно. Первое

слагаемое, vωn,st, соответствует вкладу от бегущего возмущения с характерной

частотойW, амплитуда которого затухает во времени, как 1/t3/2. Второе слагаемое,

vΩn — стационарное решение, соответствующее затухающей при удалении от гра-

ницы неоднородной волне частотой нагружения. Следовательно, закачка энергии в

цепочку при нагружении с частотой в полосе непропускания невозможна по дости-

жении определённого значения полной энергии. Распределение скоростей частиц и

зависимость во времени скорости частицы, удалённой от границы, представлены

соответственно на рисунках 2.2 и 2.3.

Рассмотрим случай, когда частота нагружения лежит строго в полосе про-

пускания. Тогда, в первую очередь заметим, что амплитуда имеет сингулярность в
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Рис. 2.2: Сравнение аналитического (2.66) и численного решений для распределения
скоростей частиц при ωet = 140 и Ω = 2.04ωe. «Крестами» и «звёздочками»
обозначены вклады vωn,st и vΩn соответственно.
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Рис. 2.3: Изменение во времени скорости 20-й частицы при Ω = 2.04ωe. Сравнение
аналитического (2.66) и численного решений.
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точке w, определяемой следующим образом:

w = ṽg,Ω
def
=

√
1− Ω2

4ω2
e

. (2.67)

Учитывая выражение для групповой скорости как функцию от частоты1

vg(ω) = vs

√
1− ω2

4ω2
e

, (2.68)

перепишем выражение для ṽg,Ω в виде

ṽg,Ω =
vg(Ω)

vs
. (2.69)

Величину ṽg,Ω можно интерпретировать как нормированную на скорость звука,

vs, групповую скорость, соответствующую частоте Ω. С физической точки, ṽg,Ω —

это скорость распространения фронта, переносящего энергию волнами с частотой

нагружения Ω. Из этих соображений, с одной стороны, можно догадаться, что не

может быть никаких возмущений с этой частотой перед этим фронтом. Значит,

выражение для скорости частицы можно записать в виде

vn|0<Ω<2ωe
≈

vΩn + vωn,cr + vωn,st, n < ṽg,Ωωet,

vωn,st, ṽg,Ωωet < n < ωet,

(2.70)

где vΩn , vωn,cr и vωn,st определяются выражениями (2.30), (2.44) и (2.65) соответственно.

С другой стороны, однако, строгий вывод (2.70) не представляется возможным

хотя бы потому, что сумма vΩn + vωn,cr не затухает при n > ṽg,Ωωet. Всё же, попыта-

емся объяснить, почему перед фронтом, распространяющимся с vg(Ω) не может

быть возмущений с этой частотой. Для этого проверим, может ли решение при

частоте Ω (а именно, vΩn и vωn,cr) существовать между точками ṽg,Ωωet и vst/a. Для

1При рассмотрении частоты строго в полосе пропускания множителем sgnω можно пренебречь.
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этого вычислим характерную частоту при w = ṽg,Ω:

W(ṽg,Ω) = Ω−
√

4ω2
e − Ω2 arcsin

Ω

2ωe
. (2.71)

То есть W(ṽg,Ω) < Ω при 0 < Ω < 2ωe. Так как характерная частота уменьша-

ется с увеличением w (см. (2.64)), следовательно, существование возмущений с

частотой Ω при ṽg,Ω < w < 1 невозможны, что подтверждает (2.70). Распределение

скоростей при различных частотах Ω представлено на рисунке 2.4. Из рисунка 2.4A
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Рис. 2.4: Сравнение аналитического (2.70) и численного решений для распреде-
ления скоростей частиц. Результаты представлены при ωet = 200 и при частотах
нагружения Ω = 0.1ωe (A) and Ω = 1.7ωe (Б). Пунктирной и штрих-пунктирной
линиями показаны координатыфронтов, распространяющимся со скоростями vg(Ω)
и vs.

видно, что распределение скоростей при низких частотах нагружения практически

синусоидально. Поскольку частота нагружения достаточно мала (Ω ≪ ωe), фронт,

переносящий энергию, практически совпадает с фронтом, движущимся со скоро-

стью звука. То есть, эффектом дисперсии можно пренебречь. При высоких частотах

нагружения ситуация иная (см. рисунок 2.4Б). Фронт vg(Ω)t движется гораздо мед-

леннее, чем фронт, распространяющийся со скоростью звука. Как будет показано

далее, вышеописанная ситуация полностью сказывается на переносе энергии. Из

рисунка 2.4 также видно, что приближённое решение для скоростей частиц (2.70)

не работает вблизи фронтов. По-видимому, более точная оценка для скорости
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частицы достигается с использованием методов, предложенных в [134, 212].

Рассмотрим Ω = 2ωe. Прежде всего, напишем выражение для вклада от

стационарной точки (2.65), подставив сперва Ω = 2ωe в формулу (2.63):

vωn,st =
F0H(ωet− n)t

√
πm 4
√
ω2
et

2 − n2n
sin

(
W

(
n

ωet

)
t+ ψ

(
n

ωet

))
. (2.72)

Из (2.72) видно, что скорость частицы в точках вдали от границы, но не близких

к фронту, растёт пропорционально
√
t. Однако, амплитуда скорости убывает при

удалении от границы. Стоит отметить, что, во-первых, амплитуда перемещений

в бесконечной цепочке также растёт пропорционально
√
t [112], однако не убы-

вает при удалении от точки нагружения. Во-вторых, сравнение вкладов (2.72),

(2.33), (2.49) с производной по времени от выражения (25) в [194] показывает, что

результат, опубликованный в работе [194], ошибочен. В-третьих, из (2.72) видно,

что на границе приближённое решение имеет сингулярность, следовательно, по

приближении к границе оно становится непригодным, то есть vn≫1 ≈ vωn,st. Вблизи

границы (при n = 0 или n = O(1)) приближённое решение можно записать в виде

суммы вкладов vωn,cr+vΩn , где первое слагаемое описывается выражением (2.49), вто-

рое — выражением (2.33). Таким образом, окончательное выражение для скорости

частицы запишем в виде

vn|Ω=2ωe
≈

vΩn + vωn,cr, vn∈B,

vωn,st, n≫ 1,

(2.73)

где B — множество точек, близких к границе, включая n = 0. Изменение во

времени решения для скоростей частиц (2.73) представлено на рисунке 2.5. Из

рисунка 2.5 видно, что приближённое и численное решения совпадают на больших

временах. Однако дополнительный анализ (2.72) показывает, что на ещё больших

временах приближённое решение постепенно отклоняется от численного, хотя его

асимптотическое поведение близко к последнему.
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Рис. 2.5: Изменение во времени скорости частицы на границе (слева) и вдали от гра-
ницы (справа) при нагружении частотой Ω = 2ωe. Сравнение аналитического (2.73)
и численного решений.

Таким образом, при частоте нагружения, соответствующей нулевой групповой

скорости, поле скоростей растёт во времени (подобный эффект также наблюдается

в континуальных средах [213]), однако вблизи границы рост амплитуды колебаний

частиц прекращается.

Предложенный в текущем параграфе подход к нахождению приближённого

нестационарного решения задачи динамики цепочки при силовом граничном

условии (периодическое силовое нагружение) был применён в работе [197] для

более сложной модели: полубесконечной линейной цепочки на упругом основании.

Показано, в частности, что при нагружении с верхней частотой отсечки рост

амплитуды колебаний частиц (пропорционально
√
t) происходит везде, кроме точек

вблизи границы (как и в случае без упругого основания), а при нагружении с

нижней частотой отсечки рост амплитуды колебаний частиц наблюдается во всех

точках, но вблизи границы — медленнее (пропорционально
√
t), чем вдали от

границы (пропорционально t3/2).
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2.1.4 Подвод энергии в линейную цепочку

В соответствии с законом баланса энергии, полная энергия, закачиваемая в

цепочку, определяется как работа внешней силы на перемещение частицы n = 0:

U = F0

∫ t

0

v0(τ) sin(Ωτ)dτ. (2.74)

Подставляя η = 0 и n = 0 в (2.14) и итоговый результат — в (2.74), получим

U =
2F 2

0Ω

mπv2s

∫ π

0

vg(θ)
2 (Ω− Ωcos(Ωt) cos(ω(θ)t)− ω sin(ω(θ)t) sin(Ωt))

(Ω2 − ω(θ)2)2
dθ

− F 2
0

mπv2s

∫ π

0

vg(θ)
2 sin2(Ωt)

Ω2 − ω(θ)2
dθ.

(2.75)

Формула (2.75) — точное выражение для полной энергии, закачиваемой в полубес-

конечную цепочку. Для того чтобы оценить его асимптотически, воспользуемся

подходом, предложенным в [192] и упрощающим выражение для энергии. Перед

этим заключим, что, если частота Ω превышает 2ωe, то есть, принадлежит полосе

непропускания, неограниченный подвод энергии невозможен2 по причине, уста-

новленной в параграфе 2.1.3. Следовательно, будем рассматривать нагружение

частотой именно строго в полосе пропускания, то есть 0 < Ω ≤ 2ωe.

На больших временах вторым слагаемым в формуле (2.75) можно пренебречь,

если частота Ω не близка к нулю (в противном случае масштаб времени колеба-

ний полной энергии, 2π/Ω, много больше, чем 2π/ωe). Следовательно, вторым

слагаемым в (2.75) нельзя пренебречь, и рост энергии тогда медленнее, чем в

рассматриваемых здесь случаях).

Заменяя в первом слагаемом в (2.75) интеграл по волновым числам на

интеграл по частотам, перепишем выражение для полной энергии как

U ≈ 2F 2
0Ωa

mπv2s

∫ 2ωe

0

vg(ω) (Ω− Ωcos(Ωt) cos(ωt)− ω sin(ωt) sin(Ωt))

(Ω2 − ω2)2
dω, (2.76)

2Как будет показано далее, это утверждение верно только в линейном приближении.
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где vg определена уравнением (2.68). Из (2.76) видно, что наибольший вклад в

интеграл вносит окрестность точки Ω = ω. Делая замену в интеграле (2.76) ϵ =

Ω− ω и, используя следующие разложения по ϵ/ωe:

Ω− Ωcos(Ωt) cos(ωt)− ω sin(ωt) sin(Ωt) = 2Ω sin2
(
ϵt

2

)
+O

(
ϵ

ωe

)
(2.77)

и

Ω2 − ω2 = 2Ωϵ+O

((
ϵ

ωe

)2
)
, vg(ω) = vg(Ω) +O

(
ϵ

ωe

)
, (2.78)

перепишем выражение для U в виде

U ≈ F 2
0 av

g(Ω)

mπv2s

∫ Ω

Ω−2ωe

sin2
(
ϵt
2

)
ϵ2

dϵ. (2.79)

Устремляя в (2.79) ϵt→ ∞ и используя тождество

∫ ∞

0

sin2 x
2

x2
dx =

π

4
, (2.80)

окончательно запишем

U ≈ F 2
0 v

g(Ω)at

2mv2s
. (2.81)

Согласно (2.81), полная энергия, подводимая в цепочку за счёт силового нагружения,

линейно растёт во времени. Причина роста — в распространении незатухающих

возмущений вдоль цепочки, фронт которых движется с групповой скоростью,

что установлено в разделе 2.1.3. Чем выше частота нагружения, тем медленнее

фронт, распространяющий энергию, а значит, скорость закачки меньше. Ранее

результат (2.81) был получен в [194] с позиции не полной энергии, а средней

скорости её закачки, т.е., (i.e., U̇ ). Заметим, что полная энергия, подводимая в

бесконечную цепочку Гука и выражаемая как (см. формулу (18) в [192])

Uinf ≈
F 2
0 at

4mvg(Ω)
, (2.82)
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также растёт прямо пропорционально времени, но обратно пропорционально

групповой скорости — скорость закачки увеличивается с уменьшением частоты.

Для проверки решения (2.81) для полной энергии проводилось численное

интегрирование уравнений (2.4) таким же образом, как было упомянуто в разде-

ле 2.1.3. Найденные скорости и перемещения частиц использованы для вычисления

полной энергии цепочки. Сравнение оценки (2.81) с результатами численного

моделирования и (2.82) показано на рисунке 2.6.

0 0.4 0.8 1.2 1.6 2
0

0.1

0.2

0.3

0.4

0.5

0.6

Рис. 2.6: Зависимости скорости закачки энергии в полубесконечную ((2.81), сплош-
ная линия) и бесконечную ((2.82), пунктирная линия) цепочки от частоты нагруже-
ния Ω. Результаты численного моделирования показаны «звёздочками».

Из рисунка 2.6 видно, что, во-первых, оценка для полной энергии, закачивае-

мой в цепочку, оценена с высокой точностью. Во-вторых, подвод энергии в полу-

бесконечную цепочку происходит быстрее, чем в бесконечную, при Ω ∈
(
0;
√
2ωe

)
.

При частотах нагружения Ω ∈
(√

2ωe; 2ωe

)
подвод энергии уже в бесконечную

цепочку быстрее, чем в полубесконечную. Заметим, что при низких частотах

нагружения энергия закачивается примерно в два раза быстрее, чем при подводе

в бесконечную цепочку тем же нагружением. Следовательно, только при Ω ≪ ωe
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задача о подводе энергии может рассматриваться симметричной относительно

границы.

Заметим, что подвод энергии в бесконечный упругий стержень (модель беско-

нечной цепочки Гука в длинноволновом пределе) при силовом нагружении оценён

в [192] (см. выражение (50) там же). Выражение для полной энергии, закачиваемой

в стержень, имеет ту же форму, что полная энергия, закачиваемая в бесконечную

цепочку Гука, если vg в (2.82) заменить на vs, то есть групповую скорость заменить

на скорость звука, аm/a—- на ρS, где ρ и S — объёмная плотность материала и

площадь поперечного сечения стержня соответственно. Последнее также работает

для полубесконечного упругого стержня (к чему можно прийти из сравнения (2.81)

и формулы (49) в [192]). Следовательно, скорость закачки энергии в полубеско-

нечную цепочку Гука может быть оценена в континуальном приближении только

при низких частотах нагружения.

При частоте отсечки Ω = 2ωe (то есть при частоте нагружения, соответ-

ствующей нулевой групповой скорости), приближение для полной энергии (2.81)

становится неприминимым. В этом случае последнее выводится из следующих

соображений. Перепишем асимптотические разложенния (2.77—2.78) относитель-

но ϵ = 2ωe − ω как

Ω− Ωcos(Ωt) cos(ωt)− ω sin(ωt) sin(Ωt) = 4ωe sin
2

(
ϵt

2

)
+O

(
ϵ

ωe

)
, (2.83)

Ω2 − ω2 = 4ωeϵ+O

((
ϵ

ωe

)2
)
, vg = vs

√
ϵ

ωe
+O

((
ϵ

ωe

) 3
2

)
. (2.84)

Следовательно, выражение для энергии может быть переписано в следующей

приближенной форме:

U ≈ F 2
0 a

√
t

πmvs
√
ωe

∫ 2ωet

0

sin2
(
ϵt
2

)
(ϵt)

3
2

d(ϵt). (2.85)
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Устремляя в (2.85) ϵt→ ∞ и, используя тождество

∫ ∞

0

sin2 x
2

x
3
2

dx =

√
π

2
, (2.86)

запишем выражение для энергии, закачиваемой в цепочку, в окончательном виде:

U ≈ F 2
0

√
t

m
√

2πω3
e

. (2.87)

Таким образом, при частота Ω = 2ωe энергия, закачиваемая в цепочку, растёт

пропорционально
√
t. В этом случае, причиной роста энергии является увели-

чивающиеся во времени скорости частиц вдали от границы (и, стало быть, их

перемещения). Заметим, что энергия подводимая в бесконечную цепочку при

той же частоте, увеличивается во времени как t3/2 (см. формулу (19) в [192]) и

рост её происходит по той же причине [112]. Причиной разного асимптотического

поведения во времени полной энергии в бесконечной и полубесконечной цепочках,

по-видимому, является особенности полей скоростей частиц. А именно, в полубес-

конечной цепочке амплитуда скорости частицы убывает с ростом n (см. (2.72)),

чего в бесконечной цепочке не происходит (см. производную от времени выраже-

ния (1.58) в [112]). Сравнение оценки (2.87) с численными результатами приведено

в разделе 2.1.5. Таким образом, аналитически получена оценка для энергии, под-

водимой в полубесконечную цепочку посредством силового нагружения. Далее

будет показано, что выражение (2.81) используется как нулевое приближение для

решения нелинейной задачи.

2.1.5 Влияние нелинейности

Исследуем влияние нелинейности на поведение полной энергии, закачивае-

мой в полубесконечную цепочку при силовом нагружении, и оценим её на больших

временах. Полная энергия может быть вычислена также с помощью подстановки в

уравнение (2.74) асимптотического разложения для скорости нулевой частицы с

точностью до βF 2
0 /c

3, которое может быть получено через методы возмущения (см.,
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например, [214, 215]). Однако, этот подход ведёт к существенным техническим

осложнениям. Следовательно, для получения формулы оценки полной энергии

будем придерживаться следующей стратегии.

Квазилинейное приближение для энергии

Исходя из нелинейной динамики, главный вклад в обмен энергии между

волнами, возникающий из-за кубической нелинейности, вносят резонансные вза-

имодействия типа (2 → 2) [216]. В 2005 году Б. Гершгорин, Ю. Львов и Д. Кай,

решая задачу, связанную с наличием внутренних локализованных мод [217] в

периодической β —ФПУЦ цепочке, переписали для неё Гамильтониан, так, что-

бы в квадратичную его часть добавился вклад от резонансных взаимодействий

типа (2 → 2), а в тетрадическую — вклады от резонансов остальных типов (см.

[217]). Тогда дисперсионное соотношение, соответствующей квадратичной части

этого гамлильтониана есть ренормализованное дисперсионное соотношение. Для

цепочки β—ФПУЦ последнее анализировалось в работах [217, 218, 219]. Для

оценки полной энергии используем ренормализованное дисперсионное соотно-

шение, полученное в [217] (см. формулу (3)). Выражение для него относительно

полубесконечной цепочки перепишем в виде

ω̃ = λω, λ =

√
1 +

3β

2πcω2
e

∫ π

−π

⟨û(t)2⟩tω(θ)2dθ, (2.88)

гдеλ—множитель ренормализации; û—прямое дискретное косинус-преобразование

от перемещения частицы, которое в общем случае (для произвольного β) неиз-

вестно; ⟨...⟩t — символ усреднения по времени. Здесь осреднение проводится

по периоду слабонелинейного осциллятора Дуффинга (см. п. 4.2.1 в [220], где

разложение уравнения (4.2.15) по параметру нелинейности приводит к выражению
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для периода ниже):

⟨...⟩t =
1

τD

∫ τD

0

...dt, τD =
2π

ωe

(
1− 3βF 2

0

8c3

)
+O

(
β2F 4

0

c6

)
. (2.89)

Здесь ренормализованное дисперсионное соотношение, ω̃, понимается как некое эк-

вивалентное дисперсионное соотношение по аналогии с частотой, квадрат которой

пропорционален эквивалентной линейной восстанавливающей силе, находящейся

в задачах динамики нелинейного осциллятора с использованием приближённых

методов (см., в частности, [221, 222]).

Заметим, что, во-первых, множитель ренормализации не зависит от волнового

числа θ. Во-вторых, поскольку при вычислении множителя λ можно ограничиться

его разложением с точностью до порядка βF 2
0 /c

3, можно использовать выражение û

в линейном приближении. Подставляя (2.9) при η = 0 и (2.89) в (2.88) с последу-

ющими преобразованиями и отбрасыванием слагаемых порядка βF 2
0 /c

3 и выше,

приходим к следующему приближению для λ:

λ ≈ 1 +
βF 2

0

c3
µ(Ω), (2.90)

µ(Ω)
def
=

3ω2
e

8π2

∫ 2π

0

∫ 2π

0

cos2 θ
2

(
Ω sin(ω(θ)t)− ω(θ) sin(Ωt)

)2
(Ω2 − ω(θ)2)2

d(ωet)dθ. (2.91)

Далее интеграл (2.91) вычисляется методом ячеек с разбиением области интегри-

рования на 106 квадратов. Зависимость функции µ, определяющей зависимость

множителя ренормализации от частоты нагружения, представлена на рисунке 2.7.

Как и ожидалось, ренормализованное дисперсионное соотношение расширяет

полосу пропускания. Для удобства, перепишем µ в следующей приближённой

форме, годящейся при Ω/ωe ∈ [1.5; 2.1]3:

µ ≈ 0.848

(
Ω

ωe

)3

− 4.580

(
Ω

ωe

)2

+ 7.591

(
Ω

ωe

)
− 3.332. (2.92)

3Выбор такого диапазона частот обсуждается далее.
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Рис. 2.7: Зависимость функции µ от частоты нагружения Ω.

Предположим, что основной вклад в закачку энергии вносят колебания с

частотами, лежащими в полосе пропускания, определяемой ренормализованным

дисперсионным соотношением ω̃ и от основных колебаний с частотой Ω (субгар-

моническими колебаниями (с частотой в κ раз меньше Ω (κ ∈ N, κ > 1) [223]) и

супергармоническими колебаниями (с частотой в κ раз больше Ω (κ ∈ N, κ > 1))

пренебрегаем). Тогда, учитывая первое уравнение в. (2.88), (2.90) и (2.91), и, пред-

полагая, что частота Ω не близка к нулю, перепишем выражение (2.76) для энергии,

подводимой в цепочку, в виде интеграла по ω̃, а именно:

U ≈ 2F 2
0Ωa

mλπv2s

∫ ω̃max

0

vg
(
ω̃
λ

)
(Ω− Ωcos(Ωt) cos(ω̃t)− ω̃ sin(ω̃t) sin(Ωt))

(Ω2 − ω̃2)2
dω̃, (2.93)

где ω̃max —максимальное значение ренормализованного дисперсионного соотноше-

ния. Выполняя те же операции, сделанные в предыдущем подпараграфе, получаем
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следующее приближённое выражение для полной энергии:

U ≈
F 2
0 v

g

(
Ω

λ

)
at

2mλv2s
. (2.94)

Подставляя (2.90) и (2.91) в (2.94) и оставляя только слагаемые порядка βF 2
0 /c

3,

получим окончательное выражение для полной энергии:

U ≈
F 2
0 v

g
(
Ω̃
)
at

2mv2s

(
1− βF 2

0

c3
µ

)
, Ω̃

def
= Ω

(
1− βF 2

0

c3
µ

)
. (2.95)

Такимобразом, выражение для полной энергии, подводимой в цепочку представлено

в виде суммы гармонического приближения при частоте Ω̃ и поправки, прямо

пропорциональной первому слагаемому. В дальнейшем выражение (2.95) именуется

как квазилинейное приближение для полной энергии. Из (2.95) видно, что, во-

первых, зависимость энергии от F 2
0 , как и ожидалось, нелинейна. Во-вторых,

выражение (2.95) пригодно не только при частоте нагружения, равной частоте

отсечки цепочки Гука (Ω = 2ωe), но и для частот, которые слегка превышают её.

Из (2.95), определим максимальную частоту, позволяющую пропускание волн в

цепочку, Ωcr

Ωcr

(
1− βF 2

0

c3
µ(Ωcr)

)
= 2ωe. (2.96)

Ищем решение уравнения (2.100) с точностью до порядка βF 2
0 /c

3. Зная, что Ωcr

больше, но не много больше 2ωe, запишем выражение для µ в виде

µ(Ωcr) = µ(2ωe) +O

(
βF 2

0

c3

)
. (2.97)

Подставляя (2.97) в (2.96) и, сохраняя слагаемые порядка βF 2
0 /c

3, имеем

Ωcr

(
1− βF 2

0

c3
µ(2ωe)

)
= 2ωe, (2.98)
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откуда

Ωcr =
2ωe

1− βF 2
0

c3 µ(2ωe)
= 2ωe

(
1 +

βF 2
0

c3
µ(2ωe) +O

(
β2F 4

0

c6

))
. (2.99)

Таким образом, получим следующее значение критической частоты Ωcr:

Ωcr ≈
(
2 + 2µ(2ωe)

βF 2
0

c3

)
ωe. (2.100)

Из (2.92), µ(2ωe) ≈ 0.314.

Для проверки решения для полной энергии (2.95) и критической частоты

(2.100), проводится численноемоделирование через интегрирование уравнений (2.1)

в безразмернойформе с нулевыми начальными условиями такимже образом, упомя-

нутым в разделе 2.1.4. Полученные скорости и перемещения частиц используются

для вычисления полной энергии цепочки. Далее исследуется изменение полной

энергии на больших временах для различных типов частот нагружения.

Распространение энергии на частотах, лежащих в полосе пропускания

Изменение во времени полной энергии на больших временах, приΩ ∈ (0; 2ωe)

и βF 2
0 /c

3 = 0.1 показано на рисунке 2.8A.

Из рисунка (2.8) видно, что асимптотическая оценка для полной энергии

в линейном приближениии (2.81) согласуется с численным решением на корот-

ких временах для всех частот нагружения. Для частоты Ω = 1.41ωe, результат,

полученный в линейном приближении, совпадает с результатом, полученным в

квазилинейном приближении (пунктирная и сплошная линии совпадают, см. ри-

сунок Fig. 2.8A) также с результатом численного интегрирования. Однако, на

больших временах влияние нелинейности сказывается. Например, при Ω = 1.90ωe,

Ω = 1.73ωe и Ω = 0.20ωe описание подвода энергии более точное в квазилинейном

приближении, чем в гармоническом. Однако, при Ω = ωe, гармоническое при-

ближение, напротив, точнее описывает подвод энергии, нежели квазилинейное.
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Рис. 2.8: A: Асимптотическое решение для закачиваемой энергии при βF 2
0 /c

3 = 0.1
и частотахΩ = 1.90ωe (1),Ω = 1.73ωe (2),Ω = 1.41ωe (3),Ω = ωe (4),Ω = 0.20ωe (5)
в гармоническом и квазилинейном приближениях (выражения (2.81) и (2.95)
соответственно). Б: Относительная погрешность приближенного решения для
скорости закачки энергии в гармоническом (пунктирная линия) и квазилинейном
(сплошная линия) приближениях при βF 2

0 /c
3 = 0.02 (красная линия) and βF 2

0 /c
3 =

0.1 (чёрная линия).

Для более подробного анализа точности асимптотических приближений, вычис-

лим относительную погрешность U̇asympt (с использованием выражений (2.81)

и (2.95) для гармонического и квазилинейного приближений соответственно и

U̇num, осреднённым по интервалу времени, равным 103/ωe, для диапазона ча-

стот Ω ∈ [0.09ωe; 1.95ωe]. Из рисунка 2.8Б видно, что для частот, которые близки к

частоте отсечки, относительная погрешность гармонического приближения суще-

ственно выше, чем квазилинейного. Таким образом, при частотах Ω, меньших чем

≈ 1.5ωe, подвод энергии может быть оценён в линейном приближении с приемлемой

точностью.

Рассмотрим изменение полной энергии, закачиваемой в цепочку, при частоте

нагружения, равной частоте отсечки. Зависимость энергии во времени представлена

на рисунке 2.9.

Из рисунка 2.9 видно, что подвод энергии при Ω = 2ωe имеет два масштаба

времени. Первый масштаб соответствует росту энергии, который с высокой точно-

стью описывается в линейном приближении (формула (2.87), см. рисунок 2.9А).
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Рис. 2.9: Изменение энергии, закачиваемой в полубесконечную цепочку при частоте
отсечки гармонической цепочки (Ω = 2ωe) на малых (А) и больших временах (Б).
Асимптотическая оценка показана для βF 2

0 /c
3 = 0 (1, выражение (2.87)), βF 2

0 /c
3 =

0.02 (2, выражение (2.95)), βF 2
0 /c

3 = 0.1 (3, выражение (2.95)).

Начиная с этого времени, скорость закачки претерпевает острый рост. Изменение

полной энергии может быть описано в квазилинейном приближении с достаточно

высокой точностью (как минимум на временах ωet < 250, см. рисунок 2.9Б).

Распространение энергии на частотах, лежащих в полосе непропускания

Рассмотрим подвод энергии в полубесконечную цепочку при Ω > 2ωe. нагру-

жение частотой, превышающей 2ωe, приводит к закачке энергии (см. рисунок 2.10).

Для того чтобы понять природу резкого увеличения закачиваемой энергии,

проводится набор численных экспериментов. С помощью них обнаружена локали-

зованная мода, которая распространяется медленнее, чем бегущие затухающие

возмущения. Более того, численный эксперимент, проведённый для невозмущён-

ной полубесконечной цепочки (β = 0, F = 0) показал, что та же запущенная

локализованная мода исчезает. Исходя из вышеописанных наблюдений, можно

предположить, что причина подвода энергии— супратрансмиссия, а, значит, источ-

ник закачиваемой энергии — внутренние локализованные моды. Из рисунка 2.10

видно, что, во-первых, изменение во времени полной энергии описывается ква-

зилинейным приближением (2.94) как минимум на временах ωet < 150. Однако,
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Рис. 2.10: Квазилинейное приближение для полной энергии (2.95), закачивае-
мой в полубесконечную цепочку на частотах Ω = 2.005ωe (3), Ω = 2.02ωe (2),
Ω = 2.04ωe (1). Сравнение аналитического и численного решений показано
при βF 2

0 /c
3 = 0.1.

квазилинейное приближение теряет точность по причине либо замедления, либо

остановки закачки энергии. Следовательно, при высоких частотах нагружения и

существенно больших временах, рост закачиваемой энергии не происходит по

линейному закону. По-видимому, поправки порядка β2F 4
0 /c

6 необходимы для точ-

ного описания процесса. Можно также увидеть, что малейшее изменение частоты

нагружения приводит к существенному изменению скорости закачки энергии.

Рассмотрим случай, когда частота нагружения близка к значению Ωcr. Про-

водится численный расчёт полной энергии цепочки при частотах 2ωe ⩽ Ω ⩽ Ωcr

и 0 < βF 2
0 /c

3 ⩽ 0.1, и затем проводится сравнение аналитических и числен-

ных результатов (2.95). Соотношения между Ω/ωe и βF 2
0 /c

3, соответствующие

различному характеру подвода энергии в цепочку, приведены на рисунке 2.11.

Есть соотношения, при которых энергия не закачивается в цепочку, согласно

и численным расчётам и квазилинейному приближению (2.95). Эти соотношения

показаны на диаграмме «треугольниками» (рисунок 2.11) свыше разделяющей
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линии, определяющей значение Ωcr по предсказанию (2.100). Существуют та-
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Рис. 2.11: Диаграмма соотношению между βF 2
0 /c

3 и Ω/ωe, соответствующее спо-
собности полной энергии к закачке. Показаны квазилинейное приближение для
максимальной частоты, позволяющей закачку энергии ((2.100), сплошная линия)
и результаты численного моделирования («треугольники», «кружки» и «квадра-
ты»). «Треугольники» и «кружки» соответствуют значениям, при которых закачка
энергии невозможна. «Квадраты» соответствуют значениям, при которых закачка
возможна.

кие значения Ω/ωe и βF 2
0 /c

3, при которых энергия закачивается в цепочку, и

квазилинейное приближение это показывает (обозначено «квадратами»). Одна-

ко, согласно результатам численного моделирования, некоторые значения Ω/ωe

и βF 2
0 /c

3 соответствуют неспособности энергии к её закачке, но квазилинейное

приближение (2.100) показывает противоположное. Эти значения обозначены

«кружками» и распределены между «треугольниками» и «квадратами». Следова-

тельно, реальное значение максимальной частоты, позволяющей закачку энергии,

меньше, чемΩcr. По-видимому, пренебрежение взаимодействиями типов, отличных

от (2 → 2), при оценке полной энергии может привести к ошибке в (2.93) и (2.100),

когда речь идёт о максимальной частоте нагружения, при которой закачка энергии

возможна. Исследование этого вопроса остаётся за рамками диссертации. Выраже-

ние (2.100) может быть оценено как верхняя граница для критической частоты (то

есть Ωcr). Нижняя граница для критических частот может быть условно проведена

через точку (0.10; 2.045). Наклон этой линии меньше, чем той, что соответствует
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верхней границе (2µ(2ωe) ≈ 0.628).

Проведены численные расчёты для полной энергии, при внешней силе в

правой части уравнения динамики нулевой частицы (2.1), равной F0 cos(Ωt). Из

результатов этих расчётов заключаем, что замена синусоидального возмущения

косинусоидальным не оказывает значительных влияний на подвод энергии, и

квазилинейное приближение для неё также работает в тех же условиях, что при

нагружении по закону синуса (в линейном приближении этот факт легко доказать

аналитически).

2.2 Подвод при кинематическом нагружении на границе
2.2.1 Постановка задачи

Постановка задачи динамики цепочки при кинематическом нагружении пред-

полагает известное перемещение на границе, но неизвестной силу, вызывающую

подвод энергии (рисунок 2.12).

m m m m m

c, β c, β c, β c, β

A0 sin(Ωt)

Рис. 2.12: Полубесконечная цепочка, подверженная кинематическому нагружению
на границе.

Уравнения динамики записываются в виде

mv̇n = c(un+1 − 2un + un−1) + β
(
(un+1 − un)

3 − (un − un−1)
3
)
, n ∈ N,

u0 = A0 sin(Ωt),

(2.101)

гдеA0 —амплитуда нагружения. Как и в задаче силового нагружения, нелинейность

полагается малой:
βA2

0

c
≪ 1. (2.102)
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Начальные условия для перемещений и скоростей частиц запишем в виде:

un = 0, vn = 0 ∀n ∈ N. (2.103)

2.2.2 Подвод энергии в линейную цепочку

Рассмотрим подвод энергии в линейном приближении (β = 0). Для этого

случая решение задачи (2.101), (2.103) приведено в работе [193]:

un =
A0ω

2
e

π

∫ π

−π

sin(nθ) sin θ

Ω2 − ω(θ)2

(
Ω

ω(θ)
sin(ω(θ)t)− sin(Ωt)

)
dθ, n ∈ N. (2.104)

Полная энергия, закачиваемая в цепочку, равна работе силы f(t), определяемой

как

f(t)
def
= mü0 − c(u1 − u0), (2.105)

на перемещение нулевой частицы, т.е.,

U
def
= A0Ω

∫ t

0

f(τ) cos(Ωτ)dτ. (2.106)

В отличие от силового нагружения, вклад в изменение полной энергии вносит

не только внешнее нагружение частотой Ω, но и внутренняя деформация связи

вблизи границы. Как и в предыдущем параграфе, рассмотрим нагружение частотой,

находящейся в полосе пропускания. Проводя те же действия, что в параграфе 2.1.4

по аналогии с формулами (2.74) и (2.75), сводя интеграл по волновым числам к

интегралу по частотам и, откидывая периодическое слагаемое, получим

U ≈ 2cA2
0Ω

2a

πv2s

∫ 2ωe

0

vg(ω)ω (ω − ω cos(Ωt) cos(ωt)− Ω sin(Ωt) sin(ωt))

(Ω2 − ω2)2
dω,

(2.107)

где групповая скорость vg(ω) определена выражением (2.68). Рассмотрим 0 <

Ω < 2ωe. Сделаем замену ϵ = Ω − ω и, используя асимптотические разложения
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по ϵ (2.77), (2.78), перепишем (2.107) в виде

U ≈ cA2
0Ω

2avg(Ω)

πv2s

∫ Ω

Ω−2ωe

sin2
(
ϵt
2

)
ϵ2

dϵ. (2.108)

Устремляя в (2.108) ϵt→ ∞ и, пользуясь тождеством (2.80), запишем выражение

для полной энергии в окончательном виде:

U ≈ A2
0mΩ2vg(Ω)t

2a
. (2.109)

Стоит отметить, что, во-первых, производная по времени от энергии, определённой

в формуле (2.109), совпадает с выражением для потока энергии, полученным

в [225] (см. формулу (B9) для удельного потока). Во-вторых, сравнивая выражение

для закачиваемой энергии в бесконечную цепочку (см. формулу (37) в [192]):

Uinf ≈
A2

0mΩ2vg(Ω)t

a
, (2.110)

заключаем, что скорость закачки энергии в полубесконечную цепочку в два раза

меньше, чем в бесконечную при всех частотах. Следовательно, задача подвода

энергии при кинематическом нагружении может рассматриваться симметричной

относительно границы. Для проверки оценки (2.109) проводится численное инте-

грирование уравнений (2.101) при βA2
0/c = 0 в безразмерном виде тем же образом,

что и в параграфе 2.1.4, и найденные перемещения и скорости частиц использова-

лись для вычисления полной энергии. Зависимость скорости её закачки от частоты

нагружения представлена на рисунке 2.13. Численное значение скорости закачки

энергии вычислялось как отношение скорости в момент расчёта (ωet = 500) к

этому времени. Из рисунка (2.13) видно, что, в отличие от случая подвода при си-

ловом нагружении, максимум скорости закачки энергии наблюдается при высоких

частотах. Точное значение частоты нагружения, при котором скорость закачки
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Рис. 2.13: Зависимости скорости закачки энергии в полубесконечную цепочку при
кинематическом нагружении. Показаны аналитическое ((2.109), сплошная линия)
и численное («звёздочки») решения.

энергии имеет максимум, ΩM, определяется как

U̇ ′
Ω(ΩM) = 0 =⇒ ΩM =

2
√
6

3
ωe. (2.111)

Таким образом, значение ΩM =
√
2ωe, полученное в работе [193], ошибочно. Вы-

ражение (2.109) совпадает с полной энергией закачиваемой в полубесконечный

упругий стержень (формула (50) в [192]), если vg заменить на vs, то есть групповую

скорость заменить на скорость звука, а m/a —- на ρS, где ρ и S — плотность

материала и площадь поперечного сечения стержня соответственно. Таким обра-

зом, при низких частотах подвод энергии может быть описан в континуальном

приближении.

Рассмотрим Ω = 2ωe. Сделав замену переменной ϵ = 2ωe − ω, аналогично с
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проделанным в разделе 2.1.4 перепишем (2.107) как

U ≈ 4cA2
0

√
ωet

π

∫ 2ωet

0

sin2
(
ϵt
2

)
(ϵt)

3
2

d(ϵt), (2.112)

и, устремляя ϵt→ ∞ с учётом тождества (2.86), в виде

U ≈ 2
√
2cA2

0

√
ωet√

π
. (2.113)

Зависимость полной энергии приΩ = 2ωe от времени представлена на рисунке 2.14.

Хотя на временах, показанных на рисунке 2.14, оценка для полной энергии согла-
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Рис. 2.14: Зависимости скорости закачки энергии в полубесконечную цепочку при
кинематическом нагружении. Показаны аналитическое ((2.113), сплошная линия)
и численное («звёздочки») решения.

суется с результатами численного моделирования, детальный анализ показывает,

что на гораздо больших временах эта оценка теряет точность.

2.2.3 Влияние нелинейности

Исследуем влияние нелинейности на поведение во времени полной энергии,

закачиваемой в полубесконечную цепочку при кинематическом нагружении на
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больших временах.

Сделаем те же предположения, сделанные в параграфе 2.1.5. Применяя

действия с учётом структуры решения задачи динамики в линейном приближе-

нии (2.104) по аналогии с формулой (2.88), запишем выражение для ренормализа-

ционного коэффициента в следующем виде:

λ ≈ 1 +
βA2

0

c
µ(Ω), (2.114)

µ(Ω)
def
=

3ω2
e

8π2

∫ 2π

0

∫ 2π

0

(
Ω sin(ω(θ)t)− ω(θ) sin(Ωt)

)2
sin2 θ

(Ω2 − ω(θ)2)2
d(ωet)dθ. (2.115)

Интеграл в выражении для µ вычисляется с использованием метода Квази-Монте-

Карло [224]. Далее, пренебрегая супергармоническими и субгармоническими

колебаниями, и, вычисляя полную энергию по аналогии с формулами (2.93) и (2.94)

таким же образом, как в параграфе 2.1.5, получаем квазилинейное приближение

для полной энергии:

U ≈ A2
0mΩ2vg(Ω̃)t

2a
, Ω̃

def
= Ω

(
1− βA2

0

c
µ(Ω)

)
. (2.116)

Здесь мы пренебрегаем поправкой порядка βA2
0/c, поскольку, согласно сравнению

полученного аналитического и численного решений (которое проводилось по

аналогии с задачей в линейном приближении, но уже с βA2
0/c > 0), её учёт

приведёт к потере точности. Из второго уравнения (2.116) получаем предсказание

для максимальной частоты, при которой возможна закачка энергии:

Ωcr ≈
(
2 + 2µ(2ωe)

βA2
0

c

)
ωe. (2.117)

Из (2.115), µ(2ωe) ≈ 0.622. Зависимость скорости закачки энергии от частоты

нагружения представлена на рисунке 2.15.
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Рис. 2.15: Зависимости скорости закачки энергии в полубесконечную цепочку

при кинематическом нагружении. Показаны аналитическое ((2.116), сплошные

линии) и численное («звёздочки») решения при βA2
0/c = 0 (чёрный цвет), βA2

0/c =

0.05 (синий цвет), βA2
0/c = 0.1 (красный цвет).

Из рисунка 2.15 видно, что при малых частотах (приблизительно при Ω < ωe)

подвод энергии может быть c приемлемой точностью описан в линейном при-

ближении (2.109). Для умеренных частот (приблизительно при Ω < 1.6ωe), где

гармоническое приближение уже теряет точность с увеличением Ω, подвод мо-

жет быть описан в квазилинейном приближении (2.116). Однако при высоких

частотах нагружения уже квазилинейное приближение теряет точность. Из рисун-

ка 2.15 также видно, что с увеличением коэффициента нелинейности максимумы

кривых начинают сдвигаться. Сравнение частот, соответствующих максимумам

зависимостей скорости закачки от частоты нагружения, приведено на рисунке 2.16.
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Рис. 2.16: Зависимость частоты нагружения, соответствующая максимальной ско-

рости закачки энергии, от нелинейного коэффициента βA2
0/c. Показано сравнение

аналитического решения в квазилинейном приближении (2.116) с численным реше-

нием.

Из рисунка (2.16) видно, что с увеличением нелинейного коэффициента

различие между квазилинейным приближением и соответствующим численным

решением увеличивается, хотя при βA2
0/c ≤ 0.05 это различие незначительно.

Рассмотрим возможность пропускания энергии в цепочку при частотах,

близких к Ωcr. Проводится численный расчёт полной энергии цепочки при часто-

тах 2ωe ⩽ Ω ⩽ 2.15ωe и 0 < βA2
0/c ⩽ 0.1, и затем проводится сравнение анали-

тических (2.116) и численных результатов. Соотношения между Ω/ωe и βA2
0/c,

соответствующие различному характеру подвода энергии в цепочку, приведены на

рисунке 2.17.

Есть соотношения, при которых энергия не закачивается в цепочку, согласно

и численным расчётам и квазилинейному приближению (2.95). Эти соотношения

показаны на диаграмме «треугольниками» (рисунок 2.17) свыше разделяющей
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линии, определяющей значение Ωcr по предсказанию (2.117).
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Рис. 2.17: Диаграмма соотношений между βA2
0/c и Ω/ωe, соответствующих спо-

собности полной энергии к закачке. Показаны квазилинейное приближение для

максимальной частоты, позволяющей закачку энергии ((2.117), сплошная линия) и

результаты численного моделирования («треугольники», «кружки» и «квадраты»).

«Треугольники» соответствуют значениям, при которых закачка энергии невоз-

можна. «Квадраты» и «кружки» соответствуют значениям, при которых закачка

возможна.

Существуют такие соотношения Ω/ωe и βA2
0/c, при которых энергия зака-

чивается в цепочку, и квазилинейное приближение это показывает (обозначены

«квадратами»). Однако, согласно результатам численного моделирования, некото-

рые значения Ω/ωe и βA2
0/c соответствуют способности энергии к её закачке, но

квазилинейное приближение (2.117) показывает противоположное. Эти значения

обозначены «кружками» и распределены между «треугольниками» и «квадратами».

Следовательно, реальное значение максимальной частоты, позволяющей закачку

энергии, выше, чемΩcr (в отличие от силового нагружения, см. 2.1.5). По-видимому,

допущенные предположения, сделанные при выводе квазилинейного приближения

для полной энергии, закачиваемой при кинематическом нагружении, становятся

некорректными. Более детальное рассмотрение этого вопроса остаётся за рамками
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диссертации.

2.3 Результаты главы 2
Развит подход к получению приближённого нестационарного решения задачи

динамики дискретных сред, находящихся под внешним периодическим воздей-

ствием. Получено приближённое нестационарное решение в замкнутой форме для

скорости частицы на больших временах в одномерной полубесконечной линейной

цепочке под действием периодического силового нагружения на границе. Показано,

в частности, что при частоте нагружения, находящейся в полосе пропускания,

решение соответствует возмущению, распространяющемуся с двумя характерны-

ми скоростями. Показано отсутствие роста амплитуды колебаний частиц вблизи

границы (в отличие от бесконечной цепочки, в которой наблюдается рост для всех

частиц).

Получено приближённые выражения для полной энергии, закачиваемой на

больших временах в одномерную полубесконечную цепочку с кубической нели-

нейностью, при наличии периодического силового и кинематического нагружений

на границе. Показано, что решение для полной энергии в линейном приближении

согласуется с численным решением уравнения динамики цепочки, как при силовом

нагружении, так и при кинематическом (при малых частотах нагружения).

Показано, что гармоническое приближение для полной энергии имеет при-

емлемую точность при низких частотах нагружения как при силовом, так и при

кинематическом нагружениях. Квазилинейное приближение имеет высокую точ-

ность при высоких частотах силового нагружения, но теряет точность при высоких

частотах кинематического нагружения. Для определения максимальной частоты,

допускающей пропускание волн в цепочку, квазилинейное приближение непригодно

как при силовом, так и при кинематическом нагружениях.

Результаты настоящей главы могут быть обобщены на случаи взаимодействия

с более реалистичными потенциалами. Рассмотрение нагружения силой, произволь-

но меняющейся с номером частицы и/или во времени, может также представлять
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интерес. Результаты, соответствующие подводу энергии в этом случае, могут

послужить для развития теории теплопереноса на наноуровне в рамках динамики

решётки. В частности, задача о распространении тепловой волны через интерфейс

двух полубесконечных цепочек может интерпретироваться в рамках динамики

одной половины цепочки, подверженной эквивалентной внешней силе со стороны

другой её половины. Выражение для этой силы изначально неизвестно. Однако,

оперируя подходами энергетической динамики [226], можно найти некоторые

величины без вычисления этой эквивалентной силы [225]. Результаты, касающиеся

асимптотической оценки закачиваемой энергии, могут служить для упрощения

вышесказанных проблем в области динамики неоднородных решёток. Понимание

процессов, связанных с распространением в них тепловой энергии, важно для

развития устройств для отвода тепла на наноуровне: тепловых диодов, тепловых

транзисторов и т.д (см., в частности, [227, 228]).
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Глава 3. Влияние нелинейности на перераспределение энергии

между степенями свободы в упругих твёрдых телах

Введение
Термодинамическое состояние среды в локальном тепловом равновесии

может быть описано с помощью кинетической температуры, пропорциональной

кинетической энергии стохастического движения атомов как единственного па-

раметра (данный факт следует из теоремы о равнораспределении [229]), в связи

с тем, что энергия равномерно распределена по степеням свободы. Однако, вда-

ли от равновесия кинетические энергии, соответствующие различным степеням

свободы, отличаются. Следовательно, различны и соответствующие кинетиче-

ские температуры. Согласно результатам, полученным методом молекулярной

динамики, кинетические энергии движения атомов вдоль и поперёк фронта удар-

ной волны различаются [230, 231, 232, 233, 234]. При лазерном воздействии на

твёрдые тела температуры кристаллической решётки и электронной подсистемы

различны [235, 236, 237, 238, 239, 264, 241]. Концепция нескольких температур

применяется для описания неравновесных течений газов [242, 243, 244, 245, 246],

тепловых процессов в пористых средах [247, 248] (в частности, при нагреве пено-

металлов [248]), фототермических эффектов в полупроводниках [249], процессов

биотеплообмена между человеческими тканью и кровью [250, 251, 252] и т.д.

Отправной точкой для исследования многотемпературных процессов явля-

ется работа [253], где В.Л. Гинзбург и В.П. Шабанский показали возникновение

существенной разницы температур решётки и электронного газа при протекании в

металлах электрического тока высокой плотности. Причина её возникновения и

сохранения заключается в том, что время установления равновесия в электрон-

ном газе и решётке существенно меньше, чем время релаксации между ними.

В работе [254] с помощью двухтемпературной модели описан перенос энергии

между электронами и кристаллической решёткой при том же процессе, и получено
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выражение плотности энергии (на единицу объёма), переносимой от электронов к

фононам, которое подтвердилось экспериментально как на образцах бислоёв Pt/Cu

и Pt/Au при высоких температурах [255], так и на образцах золотых плёнок на квар-

цевой подложке [256] и медных плёнок на сапфировой подложке [257] при низких

температурах. В работе [258] описан процесс бомбардировки кристаллической

решётки ядерными частицами, при котором температуры электронов и решётки

отличаются. В работах [259, 260, 261] М. Гартиным и его соавторами предложена

теория теплопроводности, в которых законы термодинамики записаны с учётом

введения двух температур: кондуктивной и радиационной (различные температуры

соответствуют подводу энергии извне и её передаче внутри тела соответствен-

но [260]). Далее термомеханические процессы, описание которых предполагает

введение нескольких температур, рассматривались В.В. Аристовым [245, 246], С.

Анисимовым [262, 230, 263], А. Бобылевым [265, 266], Д. Жоу [269, 270, 271], Д.

А. Индейцевым [267, 268, 236], В. А. Кузькиным [277, 278, 279, 280, 281], Ю.В.

Петровым [240], С.Л. Соболевым [264, 239], У. Г. Хувером [231, 232, 272, 273, 233],

Х. Юзефом [274, 275, 252, 276] и другими.

В процессе теплопроводности в решётках несколько температур наблюдают-

ся, например, в неравновесном стационарном состоянии, реализуемом в системах,

заключённых между двумя термостатами с различными температурами. В рабо-

тах [282, 283] показано, что в неравновесном стационарном состоянии температуры

подрешётокмогут различаться, что справедливо как для линейных (гармонических),

так и для нелинейных (ангармонических) решёток.

В настоящей главе рассматриваются переходные процессы изменения кине-

тических энергий, соответствующих различным степеням свободы в твёрдых телах,

мгновенно выведенных из состояния равновесия: гранецентрированной кубической

решётке и цепочке масса-в-массе. И в той, и в другой системах взаимодействие

частиц по умолчанию полагается нелинейным, но первоначально задачи решаются

в линейном приближении.

По прекращении внешнего воздействия системы стремятся к равновесию.
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Переход к нему сопровождается перераспределением энергии между кинетической

и потенциальной формами и изменением кинетических энергий, стремящихся к

равновесным значениям. В работе [278] предложена теория перехода к равновесию

в пространственно однородных и линейных кристаллах произвольной структуры.

Соглано ей, во-перывых, переход к равновесию в гармонических кристаллах сопро-

вождается выравниванием кинетических и потенциальных энергий, при котором

происходят затухающие колебания стандартной (средней) кинетической энергии.

В той же работе выдвигается утверждение, что амплитуда этих колебаний затухает

во времени как 1/td/2 (где d = 1, 2, 3— размерность пространства). В настоящей

главе диссертации это утверждение опровергается при рассмотрении процесса пе-

рераспределения энергий в гранецентрированной кубической решётке. Во-вторых,

кинетические энергии, соотвтетствующие различным степеням свободы, стремятся

к различным равновесным значениям. Теория, предложенная в [279], работает

на малых временах для нелинейных кристаллов, однако на больших временах

нелинейность сказывается, вследствие чего происходит медленный процесс вы-

равнивания кинетических энергий1, описанный, в частности, в работе [277] для

треугольной решётки со взаимодействиями потенциалом Леннард-Джонса. В этой

же работе показано, что скорость выравнивания кинетических энергий определя-

ется дополнительным масштабом времени, зависящим от начальной энергии. В

диссертации то же демонстрируется для гранецентрированной кубической решётки,

притом приводится эмпирическая зависимость этого масштаба времени. Более

того, учитывается не только слабая нелинейность, но и сильная. В работе [279]

показано, что в процессе переноса энергии в гармонических кристаллах, кинетиче-

ские энергии, соответствующие различным степеням свободы, различаются даже

в случае их равенства в начальный момент времени. В диссертации исследуются

два естественно возникающих вопроса. Могут ли те же эффекты наблюдаться в

нелинейных решётках? Каков характерный масштаб времени выравнивания кине-

1Механизмом выравнивания энергий является их обмен между нормальными модами, который обсуждается,
например, в работе [284].
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тических энергий, соответствующих различным степеням свободы? Какая степень

нелинейности необходима для выравнивания кинетических энергий?

Результаты главы опубликованы в работах [285, 286]. Численные расчёты,

приведшие к результатам раздела 3.1, выполнены с использованием мощностей су-

перкомпьютерного центра Санкт-Петербургского Политехнического университета

Петра Великого.

3.1 Перенос энергии в цепочке масса-в-массе
3.1.1 Постановка задачи

Рассматривается нестационарный перенос энергии в бесконечной двухатом-

ной цепочке, представляющей собой моноатомную цепочку частиц массойm1 и

систему невзаимодействующих между собой нелинейных осцилляторов массойm2,

каждый из которых прикреплён к соответствующей частице моноатомной цепоч-

ки (рисунок 3.1). Цепочка, о которой шла речь выше, называется цепочкой «масса в

Рис. 3.1: Цепочка частиц с прикреплёнными массами (масса-в-массе).

массе» и регулярно рассматривается как модель акустического метаматериала (см.,

в частности, [287, 288, 290, 291]). В частности, континуальные модели рассматрива-

лись в работах [289], а дискретные — в работах [290, 291]. Здесь рассматривается

задача в дискретной постановке. Цепочка масса в массе может, в частности, рас-

сматриваться как углеводородная цепочка (в качестве прикрепленных масс могут

служить атомы водорода, а в качестве пружинок —- химические связи). Насколько

известно, нестационарный перенос энергии в данной цепочке не изучался.
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Постановка задачи

Предположим, что частицы моноатомной цепочки взаимодействуют с ближай-

шими соседями потенциалом β—Ферми-Паста-Улама-Цингу (ФПУЦ), а прикреп-

лённые осцилляторы—осцилляторыДуффинга. С учётом вышесформулированных

предположений, запишем уравнения динамики ячейки j:

m1ü1,j = c1 (u1,j+1 − 2u1,j + u1,j−1) + β
(
(u1,j+1 − u1,j)

3 + (u1,j−1 − u1,j)
3
)

+c2 (u2,j − u1,j) + β(u2,j − u1,j)
3,

m2ü2,j = c2 (u1,j − u2,j) + β(u1,j − u2,j)
3,

(3.1)

где u1,j и u2,j — перемещения частиц β—ФПУЦ цепочки и прикреплённых ос-

цилляторов соответственно; c1 и c2 — линейные силовые константы β—ФПУЦ

цепочки и прикреплённых осцилляторов соответственно; β ⩾ 0 — нелинейная

силовая константа. Для простоты положим c1 = c2 = c.

Рассмотрим изменение во времени поля начальной кинетической энергии в

целой цепочке. Последнее создаётся заданием случайных начальных скоростей

частиц:

u1,j = u2,j = 0, u̇1,j = ρ1,j

√
2T 0

j /m1, u̇2,j = ρ2,j

√
2T 0

j /m2, (3.2)

где T 0
j — начальная кинетическая энергия частиц ячейки j (см. определение (3.4));

ρ1,j и ρ2,j — некоррелированные случайные числа с нулевым математическим

ожиданием и единичной дисперсией, то есть ⟨ρ1,j⟩ = ⟨ρ2,j⟩ = 0, ⟨ρ21,j⟩ = ⟨ρ22,j⟩ = 1,

⟨ρ1,jρ2,j⟩ = 0. Отметим, что начальные условия (3.2) соответствуют нулевым

начальным потокам энергии и равным начальным кинетическим энергиям ФПУЦ

цепочки и осцилляторов.
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Энергии подрешёток

Рассмотрим бесконечное множество реализаций системы с начальными

условиями (3.2). Как будет показано в настоящем параграфе, кинетические энер-

гии β—ФПУЦ цепочки и подрешётки осцилляторов различаются. Следоватеьно,

для описания процесса переноса энергии состояния введём следующую матри-

цу T [279]:

2T j
def
=

 m1⟨u̇21,j⟩
√
m1m2⟨u̇1,ju̇2,j⟩

√
m1m2⟨u̇2,ju̇1,j⟩ m2⟨u̇22,j⟩

 . (3.3)

Диагональные элементы T определяют кинетические энергии подрешёток (β—

ФПУЦ цепочки и осцилляторов соответственно):

2T11,j = m1⟨u̇21,j⟩, 2T22,j = m2⟨u̇22,j⟩. (3.4)

Недиагональные компоненты T характеризуют корреляцию между скоростями

частиц. Введём также стандартную кинетическую энергию, T :

Tj =
1

2

(
T11,j + T22,j

)
. (3.5)

Таким образом, начальные условия (3.2) предполагают заданный в начальный

момент профиль энергии, одинаковый для каждой из подрешёток. Изменение во

времени кинетических энергий T11,j и T22,j рассматривается ниже.

3.1.2 Перенос энергии в линейной цепочке масса-в-массе

В линейных системах (β = 0) энергия переносится невзаимодействующими

волнами, которые распространяются свободно по цепочке. Режим, при котором

энергия переносится таким образом, называется баллистическим. В настоящем

разделе представляется аналитическое решение, описывающее баллистический

перенос энергии в цепочке масса-в-массе. Покажем, что при переносе кинетиче-

ские энергии T11,j и T22,j, соответствующие β—ФПУЦ цепочке и прикреплённым

осцилляторам, различны, даже если в начальный и конечный (при t→ ∞) моменты
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времени они равные.

Дисперсионное соотношение и групповые скорости

Для анализа переноса энергии в рассматриваемой системе необходимо

построить её дисперсионное соотношение. Подставляя β = 0 в уравнение (3.1),

перепишем его в матричной форме:

Mü j = C 1u j+1 +C 0u j +C−1u j−1,

M =

m1 0

0 m2

 , C 1 = C−1 = c

1 0

0 0

 ,

C 0 = c

−3 1

1 −1

 , u j = [u1,j u2,j]
⊤,

(3.6)

где матрицы C±1 определяют жёсткости решёток, соединяющих ячейку j с

ближайшими соседями; матрица C 0 описывает взаимодействия частиц внутри

ячейки j.

Для того чтобы найти дисперсионное соотношение, ω(k), будем искать

решение уравнения (3.6) в виде

u j = U ei(ωt+kj), i2 = −1, (3.7)

где k ∈ [0; 2π]—волновое число;U —константный вектор амплитуды. Подставляя

выражение (3.7) в (3.6), получим систему однородных линйеных алгебраических

уравнений относительноU :

(
Ω − ω2I

)
U = 0 , Ω = −M − 1

2C 0M
− 1

2 − 2M − 1
2C 1M

− 1
2 cos k, (3.8)

где Ω — динамическая матрица цепочки; I — 2 × 2 единичная матрица. Мат-

рица Ω — вещественная и симметричная и, следовательно, для неё справедливо
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представление

Ω = PΛP⊤, Λ =

ω2
1 0

0 ω2
2

 , (3.9)

где P — ортогональная матрица, состоящая из единичных собственных векторов

матрицы Ω (поляризационная матрица); ω1,2(k) — акустическая и оптическая

ветки дисперсионного соотношения, а именно

ω1,2(k) =
ωe√
γ

√
R(k)∓

√
R2(k)− 4γ sin2

k

2
,

R(k) =
1 + γ

2
+ 2γ sin2

k

2
, ωe =

√
c

m1
, γ =

m2

m1
.

(3.10)

Одним из ключевых параметров задачи — соотношение масс прикреплённых

осцилляторов и масс цепочки Гука, γ = m2/m1. Дисперсионное соотношение

при различных значениях параметра γ представлено на рисунке 3.2. От этого

параметра зависит, в частности,ширина полосы непропусканиямежду акустической

и оптической ветками, определяемая разницей между минимальным значением

последней и максимальным значением первой:

δω
def
= minω2 −maxω1 =

ωe√
2γ

(√
2(1 + γ)−

√
1 + 5γ −

√
1 + γ(25γ − 6)

)
.

(3.11)

Из формулы (3.11) следует, что ширина полосы непропускания стремится

к бесконечности при стремлении γ к нулю. При γ → ∞ ширина полосы непро-

пускания стремится к частоте отсечки линейной цепочки на упругом основании.

Нестационарные процессы переноса энергии в последней системе изучаются в

работах [122, 292]. Зависимость ширины полосы непропускания от соотношения

масс γ представлена на рисунке 3.3.

Из рисунка 3.3 видно, что эта зависимость, по крайней мере, не монотонная.

Минимальное значение ширины запрённой зоны (δω ≈ 0.526ωe) достигается

при γ ≈ 0.646.
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Рис. 3.2: Акустическая (синие линии) и оптическая (чёрные линии) ветки диспер-
сионного соотношения при γ = 2 (сплошная линия), γ = 1 (пунктирная линия),
γ = 1

2 (штрихпунктирная линия), and γ = 1
5 (точечная линия).
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Рис. 3.3: Ширина запрещённой зоны как функция соотношения масс.

Соотношение масс также влияет на групповые скорости, от которых зависит

форма и скорость распространения волны при баллистическом режиме переноса
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энергии [293, 279, 281]. Групповые скорости определяются как

vg1,2(k)
def
= a

dω1,2

dk
,

vg1,2 =
vs
√
γ

2

1± 1−R(k)√
R2(k)− 4γ sin2 k

2

 sin k

√
R(k)∓

√
R2(k)− 4γ sin2 k

2

,

(3.12)

где vs
def
= ωea— скорость звука.

Если массы осцилляторов значительно меньше масс, к которым они прикрепле-

ны (γ ≪ 1), тогда справедливы следующие разложения для групповых скоростей:

vg1 = vs

(
1− γ

2

)
cos

k

2
+O(γ2),

vg2 = vsγ
3
2 sin k +O

(
γ

5
2

)
.

(3.13)

Из выражений (3.13) следует, что для малых γ групповая скорость, соотвеству-

ющая оптической ветке дисперсионного соотношения, значительно меньше, чем

акустической. Зависимости групповых скоростей представлены на рисунке 3.4.

В разделах 3.1.2 и 3.1.2 будет показано, что именно различие между группо-

выми скоростями решающим образом влияет на перенос энергии и что разложе-

ние (3.13) позволяет решить задачу её переноса в замкнутой форме.

Общее решение задачи переноса энергии

Общее решение, описывающее изменение во времени поля стандартной кине-

тической энергии (формула (3.14)) при мгновенном возмущении имеет вид (вывод

его представлен в работе [279]):

T (t, x) = T F (t, x) + T S(t, x), (3.14)
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Рис. 3.4: Групповые скорости, соотвествующие акустической (синие линии) и опти-
ческой (чёрные линии) веткам дисперсионного соотношения при γ = 2 (сплошная
линия), γ = 1 (пунктирная линия), γ = 1

2 (штрихпунктирная линия), and γ = 1
5 (то-

чечная линия).

T F (t, x) =
T 0(x)

8π

2∑
j=1

∫ 2π

0

cos (2ωj(k)t)dk, (3.15)

T S(t, x) =
1

8π

2∑
j=1

∫ 2π

0

T 0(x+ vgj (k)t)dk, (3.16)

где x— пространственная континуальная координата; T 0(x) — начальное поле

кинетической энергии. Здесь и далее расматривается континуальное поле T (t, x).

Полагается, что кинетическая энергия элементарной ячейки j совпадает с T (t, aj).

Слагаемое T F соотвествует высокочастотным колебаниям кинетической энергии в

области возмущения, вызванным переходом её части в потенциальную (в линейных

решётках кинетическая и потенциальная энергия, как известно, выравниваются).

Слагаемое T S отвечает за медленные изменения профиля кинетической энергии,

вызванное её переносом. Каждое из слагаемых T F и T S равно сумме вкладов

акустической и оптической веток.

Следует отметить, что выражение (3.14) выведено в [279] через континуали-

зацию дискретного поля кинетической энергии, которое, в свою очередь, получено
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из точного решения уравнений динамики решётки.

Фундаментальное решение

Поскольку рассматриваемая задача переноса энергии линейная, изменение

любого профиля кинетической энергии полностью может быть описано с исполь-

зованием фундаментального решения (через его свёртку с начальным профилем

энергии). Для его получения рассмотрим точечный источник возмущения:

T 0(x) = Aδ(x), (3.17)

где A — константа размерностью Дж· м. Подставляя (3.17) в (3.14) и, пренебрегая

слагаемым T F , находим

T ≈ T S = Tac + Top,

Tac =
A

8π

∫ 2π

0

δ(x+ vg1(k)t)dk, Top =
A

8π

∫ 2π

0

δ(x+ vg2(k)t)dk,
(3.18)

где Tac и Top соотвественно определяют вклады акустической и оптической веток

дисперсионного соотношения в распростренение энергии.

Вычисляя интегралы (3.18) с помощью тождества

∫
D

δ(f(ξ))dξ =
∑
i

|f ′(ξi)|−1, f(ξi) = 0, (3.19)

где ξi — нули функции f , лежащие внутри области D, имеем

Tac =
A

8πt

∑
i

∣∣∣dvg1
dk

|k=ki

∣∣∣−1

, vg1(ki) =
|x|
t
,

Top =
A

8πt

∑
i

∣∣∣dvg2
dk

|k=ki

∣∣∣−1

, vg2(ki) =
|x|
t
.

(3.20)

Здесь суммирование производится по корням ki уравнения vgj (k) = |x|/t. Из

выражений (3.12) и (3.20) следует, что функции Tac и Top чётные относительно нуля
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и что фундаментальное решение, домноженное на время является автомодельным

решением относительно переменной x/t.

При γ ≪ 1 фундаментальное решение (3.20) представлено в замкнутой

форме:

Tac ≈
AH (w1t− |x|)
4π
√
w2

1t
2 − x2

, w1 = max vg1,

Top ≈
AH (w2t− |x|)
4π
√
w2

2t
2 − x2

, w2 = max vg2,

(3.21)

где w1 и w2 — максимальные групповые скорости. Из (3.21) следует, что при

малых γ вклады акустической и оптической веток имеют ту же форму, что и фунда-

метальное решение для цепочки Гука [294]. Сравнение (3.20) и (3.21) показывает,

что выражение (3.21) имеет высокую точность приблизительно при γ < 0.05.

Вклады акустической и оптической веток в фундаметальное решение пред-

ставлены на рисунке 3.5. Заметим, что площади по кривыми вкладов акустической и
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Рис. 3.5: Вклады акустической (А) и оптической (Б) веток в фундаментальное
решение (формула (3.20) при γ = 2 (сплошная линия), γ = 1 (пунктирная ли-
ния), γ = 1/2 (штрихпунктирная линия), γ = 1/10 (точечная линия). Красными
пунктирными линиями показаны асимптоты x = tmax vgj .

оптической веток в фундаментальное решение равны. Следовательно, акустические

и оптические волны переносят ту же энергию. Также на рисунке 3.5 видно, что

при γ ≪ 1 фронт оптической волны распространяется значительно медленнее,
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чем акустической, поскольку vg2 ≪ vs. При γ = 2 фронты акустической и оптиче-

ской волн распространяются синхронно, поскольку соответствующие групповые

скорости почти равны. Также отметим, что при γ = 1/2, 1, 2 вклад акустической

ветки имеет локальный максимум в точке x = 0. Этот факт может интерпре-

тироваться кинетической теорией, согласно которой энергия распространяется

квазичастицами (волновыми пакетами), движущимися с групповыми скоростями.

Физический смысл этих квазичастиц обсуждается в работе [108]. При больших γ

вклад акустических квазичастиц с малыми групповыми скоростями довольно высо-

кий. Плотность медленных квазичастиц становится меньше с уменьшением γ, и,

таким образом, при γ < 0.1027 локальный максимум исчезает.

Таким образом, фундаментальное решение сильно зависит от соотношения

масс γ. При малых γ оно представимо с помощью приближения (формула (3.21)).

Далее будет показано, что параметр γ также влияет на кинетические энергии

подрешёток T11 и T22 как в линейной так и в нелинейной цепочках. Далее рассмат-

риваются процессы при γ = 0.1 и γ = 2, соответствующие значительно разным

фундаментальным решениям (см. рисунок 3.5).

Синусоиальное распределение энергий

Рассматривается затухание синусоидальных профилей кинетической энергии

при разных значениях параметра γ. Предлагается аналитическое описание поведе-

ния кинетических энергий T11 и T22, определённых выражением (3.4). В частности,

покажем, что кинетические энергии в процессе их переноса различны, даже если в

начальный и конечный (t→ ∞) моменты времени они равны.

Аналитическое решение

Задача изменения во времени синусоидального распределения энергии тесно

связана с экспериментом методом TTG [295, 296], в рамках которого синусоидаль-

ное поле температуры генерируется интерференцией двух лазерных импульсов.
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Синусоидальное распределение энергии определяется как

T 0(x) = Tb +∆T sin
2πx

L
, (3.22)

где Tb и ∆T — константы, притом ∆T ≪ Tb; L— длина ячейки периодичности.

Изменение во времени матричной энергии, определённой формулой (3.3),

описывается как

T (t, x) = TF (t, x) +T S(t, x),

TF (t, x) =
1

2

(
Tb +∆T sin

2πx

L

)
F (t), T S(t, x) =

1

2

(
TbI +∆TS(t) sin

2πx

L

)
,

(3.23)

где

F (t) =
1

2π

∫ 2π

0

PF̃P⊤dk, S(t) =
1

2π

∫ 2π

0

PS̃P⊤dk,

F̃ij = δi,j cos (2ωjt), S̃ij = δi,j cos
2πvgj t

L
.

(3.24)

Подробный вывод выражения (3.23) приведён в [279]. Здесь слагаемое F (t) опи-

сывает изменение кинетических энергий, вызванное перераспределением полной

энергии между её кинетической и потенциальной формами, а слагаемое S(t) —

эволюционный процесс, связанный с переносом энергии. Эти два процесса имеют

различные масштабы времени. На малых временах (порядка нескольких перио-

дов элементарных колебаний атома) слагаемое F (t) осциллирует во времени и

стремится к нулю. На больших временах изменение поля кинетической энергии

за счёт её переноса описывается слагаемым S(t). Характеристический масштаб

времени этого процесса, |L/vgj | — время пробега волны через ячейку периодич-

ности длиной L (таким образом, много большее, чем масштаб времени быстрых

процессов, описываемыми F (t)). Поскольку в дальнейшем рассматривается изме-

нение кинетических энергий именно на этом масштабе времени, слагаемым F (t)
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пренебрегаем. Тогда кинетические энергии подрешёток определяются как

T11(t, x) =
1

2

(
Tb +∆TS11(t) sin

2πx

L

)
, T22(t, x) =

1

2

(
Tb +∆TS22(t) sin

2πx

L

)
.

(3.25)

Из (3.25) следует, что заданный в начальный момент времени синусоидальный

профиль остаётся таковым в любой момент времени. При t → ∞ функции Sjj

стремится к нулю. Следовательно, в конечный момент времени кинетические

энергии T11 и T22 становятся равными. Далее рассматривается изменение во

времени амплитуд кинетических энергий, определяемых как:

Ajj(t) =
2

L

∫ L

0

Tjj(t, x) sin
2πx

L
dx. (3.26)

Аналитическое решение для амплитуд кинетических энергий достигается

подстановкой (3.25) в (3.26), что даёт

Ajj = ∆TSjj/2. (3.27)

Сравнение аналитического и численного решений с результатами численного

моделирования представлено далее. Рассматривается также вклад акустических

и оптических колебаний в изменение амплитуд Ajj. Согласно определению (3.24)

для вкладов справедливы выражения

Ajj = Aac
jj + Aop

jj ,

Aac
jj =

∆T

4π

∫ 2π

0

P 2
j1 cos

2πvg1t

L
dk,

Aop
jj =

∆T

4π

∫ 2π

0

P 2
j2 cos

2πvg2t

L
dk.

(3.28)

Численное моделирование

Проверка аналитического решения, приведённого в 3.1.2 численным модели-

рованием производится следующим образом. Амплитуды кинетических энергий
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вычисляются с помощью их определения (3.26), где интеграл заменяется суммой

по N частицам в ячейке периодичности. Сами кинетические энергии вычисляются

при замене математического ожидания в уравнениях (3.4) осреднением по Nr

реализациям. Поля скоростей частиц находятся через интегрирование уравнений

динамики (3.6) с начальными условиями (3.2)2 и (3.22) симплектическим методом

Кэнди и Розмуса [297, 298] при периодических граничных условиях и следующих

параметрах:
N = 103, Nr = 104, ∆T = 0.1Tb,

∆t = 2 · 10−3τe, τe = 2π/ωe, β = 0,
(3.29)

где ∆t—шаг по времени.

Случай γ = 2

Приведём сравнение аналитического решения (3.28) для амплитуд A11 и A22

кинетических энергий T11 и T22 с результатами численного моделирования. Ана-

лизируются также вклады акустических и оптических колебаний в поведение

кинетических энергий. Рассматривается соотношение γ = 2, при котором группо-

вые скорости, соответствующие акустической и оптической веткам дисперсионного

соотношения, одного порядка.

Изменение амплитуд кинетических энергий представлено на рисунке 3.6.

Из рисунка 3.6 видно, что, во-первых, в его масштабе аналитическое и чис-

ленное решения практически совпадают, во-вторых, в процессе переноса энергии

кинетические энергии подрешёток, T11 и T22, различны. Амплитуды обеих соверша-

ют затухающие колебания. Вышеперечисленные свойства характерны для систем

с баллистическим режимом переноса энергии. Также из рисунка 3.6 видно, что

периоды колебаний амплитуд кинетических энергий почти одного порядка в силу

приблизительного равенства групповых скоростей, соответствующих акустической

и оптической ветке.

На больших временах основной вклад в изменение амплитуды A11 дают аку-

2Распределение случайных чисел ρ1,j и ρ2,j полагается равномерным.
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Рис. 3.6: Затухание амплитуд A11 (слева) и A22 (справа) кинетических энергий
при γ = 2. Аналитическое (красная сплошная линия), численное (красные «круж-
ки»), вклад акустической (чёрная сплошная линия) и оптической (синяя линия)
веток дисперсионного соотношения.

стические колебания, в изменение амплитуды A22 — оптические. Предварительные

расчёты показывают, что при других значениях γ = O(1) поведение амплитуд

кинетических энергий проявляется схожим образом.

Случай γ ≪ 1. Баллистическая инверсия спектров

Выведем замкнутое решение для амплитуд кинетических энергий, когда

массы осцилляторов значительно меньше масс частиц, к которым они прикрепле-

ны (то есть γ ≪ 1). Для начала проведём сравнение численного и аналитического

решений при γ = 1/10, как сделано в параграфе 3.1.2. Изменение амплитуд кине-

тических энергий представлено на рисунке 3.7. Из рисунка 3.7 видно, что, также,

как в предыдущем случае, амплитуды совершают затухающие колебания, притом

основной вклад в изменение амплитуды A11 дают акустические колебания, в изме-

нение амплитуды A22 — оптические. Также видно из рисунка 3.7, что колебания

кинетической энергии совершаются с двумя различными частотами: каждый вклад

имеет собсвтенную характерную частоту.

Чтобы объяснить последнее, выведем решение для Ajj в замкнутой форме

при γ ≪ 1. В этом случае, используя формулу (3.13) групповые скорости можно
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Рис. 3.7: Затухание амплитуд A11 (слева) и A22 (справа) кинетических энергий
при γ = 1/10. Аналитическое (красная сплошная линия), численное (красные
«кружки»), вклад акустической (чёрная сплошная линия) и оптической (синяя
линия) веток дисперсионного соотношения.

выразить следующим образом

vg1 ≈ w1 cos
k

2
, vg2 ≈ w2 sin k, (3.30)

где w1, w2 — максимальные групповые скорости, определённые формулой (3.21).

Подставляя (3.30) в (3.28), имеем:

Aac
jj ≈

∆T

4π

∫ 2π

0

P 2
j1 cos

(
2πw1t

L
cos

k

2

)
dk, Aop

jj ≈ ∆T

4π

∫ 2π

0

P 2
j2 cos

(
2πw2t

L
sin k

)
dk.

(3.31)

Из анализа выражений (3.31) следует, что при малых γ компоненты P 2
ij медленно

меняются как функции волнового числа. Следовательно, можно их среднее зна-

чение вынести за знак интеграла. Оставшиеся подынтегральные функции легко

интегрируются через функции Бесселя первого рода, J . Окончательно имеем:

A11 ≈
∆T

2

[
(1− ε)J0

(
2π

L
w1t

)
+ εJ0

(
2π

L
w2t

)]
,

A22 ≈
∆T

2

[
εJ0

(
2π

L
w1t

)
+ (1− ε)J0

(
2π

L
w2t

)]
,

ε = 1− 1

2π

∫ 2π

0

P 2
11dk ≈ γ + 3γ2.

(3.32)
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Выражение (3.32) является решением задачи переноса энергии с синусоидальным

её начальным профилем в замкнутой форме. Сравнение этого решения с точным

решением (формула (3.28)) представлено на рисунке 3.8. Из рисунка 3.8 видно, что
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Рис. 3.8: Точное (красная сплошная линия, формула (3.28)) и приближённое (чёр-
ная пунктирная линия, формула (3.32)) решения для амплитуд кинетических
энергий A11 (слева) и A22 (справа) при γ = 1/10.

приближённое и точное решения почти полностью совпадают.

Продолжим анализ решения (3.32). Последнее показывает, что каждая ам-

плитуда кинетической энергии имеет две основные частоты, пропроциональные

максимальным групповым скоростям w1 и w2. При γ ≪ 1 эти частоты значительно

отличаются, посколькуw1 ≫ w2. Более того в этом случае ε≪ 1, и выражение (3.32)

можно далее упростить:

A11 ≈
∆T

2
J0

(
2π

L
w1t

)
, A22 ≈

∆T

2
J0

(
2π

L
w2t

)
. (3.33)

Из приближения (3.33) становится ясно, что основной вклад в высокочастотные

колебания A11 вносят низкочастотные акустические колебания, и основной вклад

в низкочастотные колебания A22 вносят высокочастотные оптические колебания.

Это явление будем именовать «баллистической инверсией спектров».

3.1.3 Влияние нелинейности

Рассмотрим влияние нелинейности межатомных взаимодействий на решение

задачи переноса энергии с синусоидальным её профилем, заданным уравнени-
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ем (3.22). Амплитуды кинетических энергии вычисляются численно таким же

образом, описанным в разделе 3.1.2 с использованием тех же параметров (см. фор-

мулу (3.29)), но для различных значений параметра β̃, харатеризующего степень

нелинейности:

β̃ = Tbβ/c
2, 2Tb = m1v

2
s . (3.34)

Основной целью является исследование скоростей выравнивания кинетических

энергий подрешёток рассматриваемой системы (T11, T22) и зависимости их макси-

мальной разницы от параметров β̃ и γ.

Случай γ = 2

Рассмотрим сначала слабонелинейные взаимодействия
(
β̃ ≪ 1

)
. Амплитуды

кинетических энергий при γ = 2 при различных значениях малого параметра β̃

представлены на рисунке 3.9. Из рисунка 3.9 видны качественные черты баллистиче-
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Рис. 3.9: Амплитуды A11 (слева) и A22 (справа) синусоидальных профилей энергии
при γ = 2. Аналитическое решение (формула (3.28), чёрная сплошная линия),
результаты численного моделирования при β̃ = 0.05 (синие «кружки») и β̃ =
0.1 (красные «звёздочки»).

ского режима переноса энергии: колебательное затухание амплитуд кинетических

энергий подрешёток и их существенная разница. Главный эффект нелинейности

заключается в том, что обе амплитуды затухают быстрее, чем при линейных взаи-

модействиях. Однако влияние нелинейности на поведение кинетической энергии
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β-ФПУЦ частиц, A11, значительно больше, чем на поведение кинетической энер-

гии прикреплённых осцилляторов, A22. Поведение амплитуды A22 описывается в

линейном приближении (формула (3.28)) с приемлемой точностью как минимум

на временах vst/L ∼ 10, в то время как поведение амплитуды A11 — на време-

нах vst/L ∼ 1. В разделе 3.1.2 было сказано, что акустические колебания больше

влияют на поведение A11, и оптические колебания — на поведении A22. Отсюда

можно сделать вывод, что слабая нелинейность влияет на акустические колебания

сильнее, чем на оптические.

Увеличение параметра β̃ приводит к переходу из баллистического режима

переноса энергии в аномальный диффузионный режим (см. рисунок 3.10). Если
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Рис. 3.10: Амплитуды A11 (синяя линия), A22 (чёрная линия) синусоидальных
профилей энергии и их разница (красная линия) при сильной нелинейности (β̃ = 2)
и γ = 2.

при баллистическом режиме переноса энергии амплитуды кинетических энер-

гий совершают затухающие колебания, меняя при этом знак, то при переходе

в диффузионный режим их затухание монотонно. Из результатов численного

моделирования следует, что значение β̃ = 2 оказывается достаточным для того

чтобы подавить черты баллистического переноса энергии при данной длиней ячей-

ки периодичности3. При этом значении β̃ затухание амплитуд почти монотонно.
3В работе [300] показано, что значение коэффициента нелинейности, необходимого для перехода из баллистиче-
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Разница между амплитудами кинетических энергий становится меньше, чем они

сами.

Случай γ = 1/10

Так же как в предыущем случае, рассмотрим сначала слабонелинейные

взаимодействия. Амплитуды кинетических энергий, соответствующих γ = 1/10

и β̃ ≪ 1, представлены на рисунке 3.11. Из рисунка 3.11 видно, что влияние
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Рис. 3.11: Амплитуды A11 (слева) и A22 (справа) синусоидальных профилей кине-
тической энергии при γ = 0.1. Аналитическое решение (формула (3.28), чёрная
сплошная линия), результаты численного моделирования при β̃ = 0.05 (синие
«кружки») и β̃ = 0.1 (красные «звёздочки»).

слабой нелинейности на перенос энергии качественно похоже, как при γ = 2.

Затухание амплитуд остаётся колебательным, и скорость затухания увеличивается

с увеличением коэффициента нелинейности. Однако влияние нелинейности на

сами амплитуды A11 и A22 диаметрально противоположное: влияние на поведение

амплитуды кинетической энергии β-ФПУЦ цепочки, A11, слабое, в отличие от

влияния наA22. Поскольку основные вклады в изменение амплитудA11 иA22 вносят

акустические и оптические колебания соответственно (см. (3.33)), то влияние на

оптические колебания сильнее (в отличие от случая при γ = 2).

Как и в предыдущем случае, увеличение коэффициента нелинейности приво-

ского режима в аномальный диффузионный в классической β-ФПУЦ цепочке, зависит от длины волны синуса (числа
возмущённых частиц, N ). Оно уменьшается с увеличением числа возмущённых частиц как 1/

√
N .
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дит к смене режимов переноса энергии. Однако, хотя при β̃ колебания амплитуд

кинетических энергий почти монотонно, значение коэффициента оказывается

недостаточным для их выравнивания, и кинетические энергии подрешёток в про-

цессе переноса энергии остаются различными (см. рисунок 3.12А). Из результатов
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Рис. 3.12: Амплитуды A11 (синяя линия), A22 (чёрная линия) синусоидальных
профилей энергии и их разница (красная линия) при β̃ = 2 (А) и β̃ = 100 (Б)
и γ = 1/10.

моделирования следует, что для выравнивания кинетических энергий необходимо

гораздо большее значение нелинейного коэффициента β̃. Даже при существенной

нелинейности (β̃ = 100) всё ещё существует некоторая конечная разница между

амплитудами кинетических энергий (см. рисунок 3.12Б).

Максимальная разница кинетических энергий

Результаты молекулярно-динамического моделирования, представленные на

рисунках 3.9—3.12, показывают, что при обоих значений соотношения масс γ

и для всех значений нелинейного коэффициента β̃ в процессе переноса энергии

наблюдается некоторая ненулевая разница кинетических энергий. В то же время

разница уменьшается с увеличением коэффициента нелинейности. Чтобы это

показать, построим максимальную по модулю разницу между амплитудами кине-

тических энергий |A22 − A11| при различных значениях β̃ и γ (см. рисунок 3.13).

Хотя максимальная разница между кинетическими энергиями остаётся конеч-
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Рис. 3.13: Зависимость максимальной по модулю разницы амплитуд кинетиче-
ских энергий от коэффициента нелинейности при γ = 2 (синие «кружки»)
и γ = 1/10 (чёрные квадраты). Решения в линейном приближении показаны
соответствующими горизонтальными пунктирными линиями.

ной (см. рисунок 3.13), начиная с некоторого порогового значения нелинейного

коэффициента, ею можно пренебречь. Выбор конкретного значения этого нели-

нейного коэффициента зависит от задачи: какую разницу между энергиями стоит

рассматривать как уже значимую.

3.2 Переходные процессы в гранецентрированной кубической

решётке
3.2.1 Постановка задачи

В настоящем параграфе записываются уравнения движения и начальные

условия для линейной гранецентрированной (ГЦК) решётки. Начальные условия

формулируются таким образом, что начальные кинетические энергии, соответству-

ющие трём различным направлениям, отличаются.

Рассматривается бесконечная линейная ГЦК решётка, состоящая из оди-

наковых частиц. Каждая частица взаимодействует с 12 ближайшими соседями,

пронумерованными индекcом α. Векторы, соединяющие частицу с её соседом,
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обозначим4 aα, α = 0,±1, ...,±6. Очевидно, aα = 0 . Соответствующие единичные

векторы nα = aα/|aα| имеют следующий вид

n1 = (ex + ey)/
√
2, n4 = n3 − n2,

n2 = (ey + ez )/
√
2, n5 = n1 − n3,

n3 = (ex + ez )/
√
2, n6 = n1 − n2,

nα = −n−α,

(3.35)

где ex , ey , ez — орты прямоугольной системы координат, направленные вдоль

осей кубической симметрии [303]. Радиус-вектор произвольной частицы, x, имеет

следующий вид

x = a(A1n1 + A2n2 + A3n3), A1, A2, A3 ∈ Z. (3.36)

Соседние частицы соединены линейными пружинками. Тогда уравнение

движения для частицы x можно записать как

mü(x) =
∑
α

C αu(x+ aα), (3.37)

где m — масса частицы; u(x) = [ux uy uz]
⊤ — вектор-столбец, состоящий из

компонент перемещений. Отсутствие знака между матрицей и вектором означает

4Здесь и далее инвариантные векторы обозначаются прямым жирным шрифтом, матрицы — жирным курсивом.



154

их скалярное произведение. Матрицы C α для ГЦК решётки имеют вид

C 1 = C−1 =
c

2


1 1 0

1 1 0

0 0 0

 , C 2 = C−2 =
c

2


0 0 0

0 1 1

0 1 1

 ,

C 3 = C−3 =
c

2


1 0 1

0 0 0

1 0 1

 , C 4 = C−4 =
c

2


1 −1 0

−1 1 0

0 0 0

 ,

C 5 = C−5 =
c

2


0 0 0

0 1 −1

0 −1 1

 , C 6 = C−6 =
c

2


1 0 −1

0 0 0

−1 0 1

 ,

C 0 = −4cI ,

(3.38)

где c—жёсткость связи (линейная силовая константа); I — единичная матрица

размерностью 3 × 3. Стоит отметить, что матрицы C α симметричные.

Рассмотрим следующие начальные условия, соответствующие однородному

пространственному распределению кинетичческих энергий в кристалле.

ux = uy = uz = 0, u̇x = βx(x)
√

2T 0
xx/m,

u̇y = βy(x)
√
2T 0

yy/m, u̇z = βz(x)
√

2T 0
zz/m,

(3.39)

где T 0
xx, T 0

yy, T 0
zz — начальные кинетические энергии, соответствующие простран-

ственным направлениям x, y, z (см. определение (3.44)); βx(x), βy(x), βz(x) —

некоррелированые случайные числа5 с нулевым математическим ожиданием и еди-

ничной дисперсией, то есть ⟨βx(x)⟩ = ⟨βy(x)⟩= ⟨βz(x)⟩ = 0, ⟨βx(x)2⟩ = ⟨βy(x)2⟩=

⟨βz(x)2⟩ = 1, ⟨βx(x)βy(x)⟩ = ⟨βy(x)βz(x)⟩ = ⟨βx(x)βz(x)⟩ = 0. Здесь, символ ⟨...⟩

обозначает математическое ожидание, заменяемое при численном моделирова-

нии средним по реализациям (см.[301]). Нулевые начальные перемещения частиц

5Распределение случайных чисел положено равномерным.
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означает отсутствие потоков. В следующем параграфе обсуждается построение

дисперсионного соотношения.

3.2.2 Дисперсионное соотношение

В работах [277, 278] показано, что для описания перехода к равновесию в

линейном кристалле, необходимо построить для него дисперсионное соотношение.

Для получения последнего подставим в уравнение (3.37) выражение в виде волны в

следующей форме
u(x) = Aei(ωt+k·x), i2 = −1,

k = (θ1n̂1 + θ2n̂2 + θ3n̂3) /a,
(3.40)

где A — постоянный вектор амплитуды; k — волновой вектор; θ1, θ2, θ3 ∈ [0; 2π];

n̂1, n̂2, n̂3 — векторы сопряжённого базиса, такие, что ni · n̂j = δi,j.

Подставляя выражение (3.40) в уравнение (3.37), получаем однородную

систему линейных алгебраических уравнений

(
Ω − ω2I

)
A = 0, Ω = − 1

m

∑
α

C αeik·aα, (3.41)

где Ω — динамическая матрица решётки. Подстановка выражений для матриц C α

в (3.41) даёт

Ω11 = f(θ1, θ3, θ2), Ω12 = Ω21 = g(θ1, θ3, θ2),

Ω13 = Ω31 = g(θ3, θ2, θ1), Ω22 = f(θ2, θ1, θ3),

Ω23 = Ω32 = g(θ2, θ1, θ3), Ω33 = f(θ3, θ2, θ1),

f(θ1, θ2, θ3) = 2ω2
e

(
sin2

θ1
2
+ sin2

θ1 − θ3
2

+ sin2
θ2
2
+ sin2

θ2 − θ3
2

)
,

g(θ1, θ2, θ3) = 2ω2
e

(
sin2

θ1
2
− sin2

θ2 − θ3
2

)
, ω2

e =
c

m
,

(3.42)

откуда следует, что матрицаΩ вещественная и симметричная. Следовательно, для
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неё справедливо следующее представление:

Ω = PΛP⊤, Λij = ω2
j δi,j, (3.43)

где ω2
j — собственные числа матрицы Ω ; ωj, j = 1, 2, 3 — акустические ветки

дисперсионного соотношения для ГЦК решётки; P — поляризационная матрица.

Отметим, что каждая ветка дисперсионного соотношения симметрична относитель-

но любой пары компонент волновых чисел, то есть, ωj(θ1, θ2, θ3) = ωj(θ3, θ2, θ1) =

ωj(θ2, θ1, θ3) и т.д. В дальнейшем ветки дисперсионного соотношения,ωj , находятся

как корни характеристического уравнения det
(
Ω − ω2I

)
= 0. Выражения для них

здесь не приводятся в силу их громоздкости.

3.2.3 Переход к равновесию в линейной ГЦК решётке

Согласно начальным условиям (3.39) в начальный момент времени кинети-

ческая энергия системы ненулевая, и избыточная потенциальная энергия равна

нулю. Согласно теореме о вириале, движение частиц приводит к выравниванию

кинетической и потенциальной энергий и перераспределению энергии по про-

странственным направлениям (то бишь степеням свободы). Вышеперечисленные

переходные процессы вызывают высокочастотные колебания кинетических энергий,

соответствующих пространственным направлениям x, y и z. Ниже представляется

аналитическое решение, описывающее эти колебания в линейном приближении и

находятся основные (характерные) частоты этих колебаний.

Аналитическое решение

Рассмотрим бесконечное множество реализаций одного и того же кристалла,

различающихся начальными условиями (3.39). Согласно последним, начальные

кинетические энергии, соответствующие различным пространственным направле-

ниям, вообще говоря, не равны. Следовательно, для описания процесса перерас-
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пределения энергии вводится матричная энергия T [305, 278]:

2T
def
= m


⟨u̇2x⟩ ⟨u̇xu̇y⟩ ⟨u̇xu̇z⟩

⟨u̇xu̇y⟩ ⟨u̇2y⟩ ⟨u̇yu̇z⟩

⟨u̇xu̇z⟩ ⟨u̇yu̇z⟩ ⟨u̇2z⟩

 . (3.44)

Диагональные элементы матричной энергии пропорциональны кинетическим энер-

гиям, соответствующие различным пространственным направлениям:

2Txx = m⟨u̇2x⟩, 2Tyy = m⟨u̇2y⟩, 2Tzz = m⟨u̇2z⟩. (3.45)

Недиагональные же элементы определяют корреляцию между пространственными

компонентами скоростей.

Для описания эволюции (изменения во времени) матричной энергии исполь-

зуется следующая формула [278]:

T =
1

2

∫
k

PT̃P⊤dk, T̃ij = {P⊤T 0P}ij
[
cos
(
(ωi − ωj)t

)
+ cos

(
(ωi + ωj)t

)]
,∫

k

...dk =
1

8π3

∫ 2π

0

∫ 2π

0

∫ 2π

0

...dθ1dθ2dθ3,

(3.46)

где T 0 — начальное значение матричной энергии; {...}ij — элемент i, j матрицы;

матрица P определяется формулой (3.43). Рассмотрим также стандартную (сред-

нюю) кинетическую энергию, T :

T = trT/3 = (Txx + Tyy + Tzz) /3. (3.47)

Стандартной кинетической энергией определяется состояние системы в случае рав-

номерного начального распределения энергии по степеням свободы. С помощью

этой величины удобно описывать процесс выравнивания кинетической и потенци-

альной энергий. Взятие следа матрицы T приводит к следующему выражению для
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стандартной кинетической энергии:

T =
T0
2

+
T0
6

3∑
j=1

∫
k

cos
(
2ωj(k)t

)
dk+

1

6

∫
k

3∑
j=1

{P⊤devT 0P}jj cos
(
2ωj(k)t

)
dk,

(3.48)

где T0 = trT 0/3 — начальная стандартная кинетическая энергия; devT 0 — девиа-

тор начальной матричной энергий. Численный анализ (численное интегрирование

интегралов типа
∫
k ...dk обсуждается в разделе 3.2.3) третьего слагаемого показал,

что оно равно нулю при любом начальном распределении энергии T 0. Следова-

тельно, от последнего не зависят колебания стандартной кинетической энергий,

выражение для которой принимает более простой вид:

T =
T0
2

+ T1 + T2 + T3, Tj =
T0
6

∫
k

cos
(
2ωj(k)t

)
dk, (3.49)

где Tj — вклады веток дисперсионного соотношения в колебания стандартной

кинетической энергии (представлены на рисунке 3.14). Основные частоты этих

колебаний вычисляются в разделе 3.2.3.

После мгновенного возмущения система стремится к состоянию, в котором

кинетические энергии постоянны во времени, то есть к равновесию. Поскольку

в линейном кристалле нет механизма обмена энергии между нормальными мо-

дами, классическая теорема о равнораспределении, обеспечивающая равенство

равновесных кинетических энергий, не работает. В случае линейных межатномных

взаимодействий кинетические энергии различаются, и для их нахождения восполь-

зуемся теоремой о неравнораспределении [278], связвывающая их с начальными

условиями. Относительно трёхмерной решётки теорема о неравнораспределении

записывается следующим образом:

T eq =
1

6
tr (T 0) I +

1

2

∫
k

Pdiag(P⊤devT 0P)P⊤dk, (3.50)

где символом diag(...) обозначена диагональная часть матрицы.
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Рис. 3.14: Вклады T1 (сплошная линия), T2 (пунктирная линия) и T3 (штрих-
пунктирная линия) веток дисперсионного соотношения в колебания стандартной
кинетической энергии (формула (3.49)).

Таким образом, переход к равновесию в линейной ГЦК решётке может

быть описан формулами (3.46), (3.49) и (3.50), которые, в свою очередь, описы-

вают колебания стандартной кинетической энергии, вызванные выравниванием

кинетической и потенциальной энергий, а также перераспределение энергии по

пространственным направлениям. Характерный масштаб времени этих процессов

порядка периода элементарных колебаний атома τe = 2π
√
m/c.

Сравнение аналитического и численного решений

В настоящем параграфе предлагается сравнение аналитического описания

перехода к равновесию в ГЦК решётке (формулы (3.46), (3.49) и (3.50)) с численным

решением уравнения (3.37) с начальными условиями (3.39), при которых T 0
xx ̸= 0

и T 0
yy = T 0

zz = 0. То есть, мнгновенно задаётся движение частиц исключительно

вдоль оси x. Численное интегрирование производится симплектическим мето-

дом leap-frog с шагом по времени 10−2τe. При численном моделировании задаётся

решётка, состоящая из 723 частиц с периодическими граничными условиями. Ре-
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зультаты численного моделирования осреднены по 60 реализациям6. Интегралы

в формулах (3.46), (3.49) и (3.50) вычисляются методом ячеек с равномерным

разбиением области интегрирования на 108 кубов.

Колебания стандартной кинетической энергии, T , вызванные выравниванием

кинетической и потенциальной энергий, представлены на рисунке 3.15. В масштабе

0 0.5 1 1.5 2 2.5 3 3.5 4
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Рис. 3.15: Колебания стандартной кинетической энергии, T , в линейной ГЦК
решётке со случайными начальными скоростями. Аналитическое решение (форму-
ла (3.49), сплошная линия), численное решение уравнения динамики решётки в
линейном приближении («кружки»).

рисунка 3.15 видно, что аналитическое и численное решения совпадают.

Из анализа формулы (3.46) следует, что кинетические энергий Tyy и Tzz равны

в любой момент времени. Следовательно, интерес представляет рассмотрение

кинетических энергий Txx и Tyy. Изменение во времени их разницы представлено

на рисунке 3.16. Из рисунка 3.16 видно, что разница кинетических энергий Txx−Tyy
стремится к равновесному значению, примерно равному 0.21T0 и определяемому

через теорему о неравнораспределении (формула (3.50)). Дополнительный анализ

этой формулы показывает, что разница Txx − Tyy затухает во времени как 1/t.

6Дополнительно производится осреднение по решётке.
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Рис. 3.16: Перераспределение кинетических энергий Txx и Tyy в линейной ГЦК
решётке. Аналитическое решение (формула (3.46), сплошная линия), численное
решение уравнения динамики решётки в линейном приближении («кружки»).
Равновесное значение (формула (3.50)) показано пунктирной линией.

Таким образом, формулы (3.46), (3.49) и (3.50) с высокой точностью описыва-

ют переход к тепловому равновесию в линейной ГЦК решётке. Этот процесс имеет

единственный характерный масштаб времени, τe. В разделе 3.2.4 численно показы-

вается, что предложенное аналитическое решение действительно для нелинейной

решётки на малых временах.

Исследование основных частот и скорости затухания стандартной кинетиче-

ской энергии

Найдём значения основных (характерных) частот и скоростей затухания

колебаний стандартной кинетической энергий. С целью упростить анализ этих коле-

баний, рассмотрим по отдельности индивидуальные вклады веток дисперсионного

соотношения, T1, T2 и T3. Вклады, определяемые формулой (3.49), представлены на

рисунке 3.14. Классический способ определения скоростей затухания колебаний

стандартной кинетической энергии и их частот заключается в асимптотическом ана-
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лизе интегралов (3.49) методом стационарной фазы [144, 306]. Однако этот анализ

является довольно громоздким даже для двумерного случая (см., например, [307]).

Следовательно, ниже предлагается следующий упрощённый подход.

Оценим скорости затухания вкладов следующим образом. Домножив T2
и T3 на t

3
2 , можно убедиться, что получившаяся функция совершает на больших

временах незатухающие колебания. Следовательно, вклады T2 и T3 затухают как t
3
2 .

Однако амплитуда колебаний функции T1t
3
2 растёт во времени. Следовательно,

вклад T1, и, стало быть, целая стандартная кинетическая энергий, T , затухает

медленнее, чем 1/t
3
2 . Предварительные расчёты показали, что вклад T1 затухает

приблизительно как 1/t. Возможное объяснение медленного затухания этого вклада

приведено ниже.

Основные частоты колебаний стандартной кинетической энергии найдены

с помощью использования формулы (3.49) и применения дискретного преобра-

зования Фурье. Введём безразмерные комплекснозначные функции Fj, такие,

что
F1 = Φ(T1ωet/T0) , F2 = Φ

(
T2ω

3
2
e t

3
2/T0

)
,

F3 = Φ
(
T3ω

3
2
e t

3
2/T0

)
, Φ(f(t)) =

Nt−1∑
j=0

f(tj)e
−iW(k)tj ,

W(k) = 2πk/(Nt∆t), tj = j∆t.

(3.51)

В расчётах положено Nt = 500, ∆t = 0.02τe. Проекции локальных максимумов

функции |Fj| =
√
ℜ(Fj)2 + ℑ(Fj)2 на ось абсцисс определяют частоты колебаний

стандартной кинетической энергии. Зависимости |Fj| от частоты W показаны на

рисунке 3.17.

Из графика, представленного на рисунке 3.17, можно определить частоты,
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Рис. 3.17: Амплитуды |F1| ((3.51), сплошная линия), |F2| (пунктирная линия),
|F3| (штрихпунктирная линия).

при которых наблюдаются локальные максимумы функции |Fj|:

W1/ωe ≈ 1.41± 0.03, W2/ωe ≈ 1.99± 0.03,

W3/ωe ≈ 2.44± 0.03, W4/ωe ≈ 2.50± 0.03,

W5/ωe ≈ 2.66± 0.03, W6/ωe ≈ 2.82± 0.03.

(3.52)

Здесь W1 и W2 — основные (характерные) частоты, соответствующие вкладу

первой ветки дисперсионного соотношения, T1; W1, W2 и W3 — вкладу T2; W4,

W5 иW6 — вкладу T3. Некоторые из этих частот совпадают с максимумами веток

дисперсионного соотношения, а именно:

W2 ≈ max
k

ω1 = 2ωe, W3 ≈ max
k

ω2 =
√
6ωe, W6 ≈ max

k
ω3 = 2

√
2ωe.

(3.53)

Из метода стационарной фазы [144] следует, что характерные частоты колебаний

стандартной кинетической энергии могут соответствовать нулевым групповым

скоростям. Чтобы проверить это утверждение, вычислим частоты, соответствую-
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щие vg
j = 0, где vg

j — групповая скорость, определяемая как

vg
j
def
=

dωj

dk
= a

3∑
i=1

vgjini, vgji =
∂ωj

∂θi
. (3.54)

Расчёты показывают, что vg
1 = 0 при ω1 = W1 и ω1 = W2; vg

2 = 0 при ω2 = W2

и vg
3 = 0 при ω3 = W4, ω3 = W5, ω3 = W6. Следовательно, все основные частоты,

за исключениемW3, соответствуют нулевым групповым скоростям. При ω2 = W3

групповая скорость претерпевает разрыв второго рода.

Таким образом, колебания стандартной кинетической энергии имеют шесть

основных частот (3.52). Пять из них соответствуют нулевым групповым скоро-

стям, в то время какW3 соответствуют разрыву групповой скорости. Колебания

затухают медленнее, чем 1/t
3
2 (приблизительно как 1/t). Более медленное зату-

хание обусловлено тем фактом, что дисперсионное соотношение имеет нулевой

гессиан (определитель матрицы вторых частных производных) при ω1 = W2 —

стационарная точка, соответствующая этой частоте, является вырожденной. Для

случаев с вырожденными стационарными точками нахождение асимптотики трой-

ных интегралов представляется весьма громоздким [306], следовательно, более

детальный анализ асимптотического поведения стандартной кинетической энергии

в ГЦК решётке выходит за рамки настоящего исследования. Представляется, что он

может быть выполнен также аналогичным методом, предложенным для стандартной

кинетической энергии в квадратной решётке с угловыми взаимодействиями [309].

3.2.4 Влияние нелинейности

В настоящем разделе изучается влияние нелинейности межатомных взаи-

модействий на изменение во времени кинетических температур Txx и Tyy в ГЦК

решётке. Покажем, что в нелинейном случае процесс выравнивания кинетических

энергий имеет второй масштаб времени, зависящий от начальной энергии.
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Численные результаты

Рассмотрим ГЦК решётку с межатомными взаимодействиями потенциалом

Леннард-Джонса:

Π(r) = ε

((a
r

)12
− 2

(a
r

)6)
, (3.55)

где ε— энергия связи; r — длина связи; a— длина недеформированной связи.

Положим взаимодействие частиц ограниченным радиусом обезания acut, так7, что

−dΠ

dr

∣∣∣
r>acut

= 0, (3.56)

и сам радиус обрезания равным 1.4a. Следовательно, как минимум при малой

нелинейности взаимодействие частиц ограничено взаимодействием с ближайшими

соседями (так же, как и в линейном случае, рассмотренном в разделе 3.2.3).

Предположим также, что в начальныймомент времени частицыимеют нулевые

перемещения и случайные начальные скорости, направленные вдось оси x и

равномерно распределённые на отрезке [−v0
√
2; v0

√
2] (в таком случае Txx ̸= 0,

Tyy = Tzz = 0). Для исследования влияния нелинейности варьируется амплитуда

начальных скоростей частиц, связанная с начальной энергией T0 как

T0
ε

=
2

3

(
v0
vd

)2

, (3.57)

где vd
def
=
√
2ε/m — скорость диссоциации, т.е. скорость, необходимая частице

для вылета из потенциальной ямы глубиной ε. При низких начальных энергиях (то

есть, если v0 мало), рассматриваемую систему можно приблизительно считать

линейной, где линейная силовая константа (жёсткость пружинки) определяется

как c = 72ε/a2. Рассматривается изменение во времени разницы кинетических

энергий Txx−Tyy. Результаты вычислений8 при v0/vd представлены на рисунке 3.18.

7В самом деле, рассматривается взаимодействие укороченным потенциалом Леннард-Джонса, сглаженным в
окрестности радиуса обрезания [308].

8Численные расчёты производятся таким же способом, описанным в разделе 3.2.3.
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Рис. 3.18: Перераспределение кинетических энергий Txx и Tyy = Tzz в ГЦК решётке
со взаимодействиями потенциалом Леннард-Джонса на малых (А) и больших (Б)
временах. Аналитическое решение (формула (3.46)) и результаты молекулярно-
динамического моделирования при v0/vd = 0.05 («кружки»), v0/vd = 0.1 («звёз-
дочки») и v0/vd = 0.25 (чёрные точки). Пунктирной линией показано равновесное
значение, определяемое теоремой о неравнораспределении (формула (3.50)).

Из рисунка 3.18А видно, что на малых временах поведение кинетических

энергий с приемлемой точностью описывается в линейном приближении (фор-

мула (3.46)). Их разница быстро стремится к равновесному значению 0.21T0,

определяемому теоремой о неравнораспределении (3.50). На больших временах

происходит медленный эволюционный процесс: разница кинетических энергий

постепенно отклоняется от равновесного значения и медленно стремится к ну-

лю (рисунок 3.18Б). Из рисунка 3.18Б видно, что скорость эволюционного процесса,

описанного выше, зависит от начальной энергии.

Таким образом, на больших временах масштаб времени перехода к равно-

весию зависит от начальной энергии. Ниже предлагается аппроксимация этого

масштаба.

Анализ размерностей

Используя численные результаты и анализ размерностей [310], определим

масштаб времени перехода к равновесию. Из анализа размерностей следует, что

разность кинетических энергий (Txx − Tyy)/T0 зависит от трёх безразмерных
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параметров: t/τe, T0/ε, acut/a. Поскольку параметр acut/a = 1.4 зафиксирован (в

силу предположения о взаимодействии с ближайшими соседями), учитывается

влияние только первых двух параметров.

Результаты молекулярно-динамического моделирования предполагают, что

на больших временах (t≫ τe) разница кинетических энергий (Txx−Tyy)/T0 может

быть приближённо представлена в виде

Txx − Tyy = T0Ψ

(
t

τa

)
, τa = τeφ

(
T0
ε

)
, (3.58)

где τa —нелинейный масштаб времени, зависящий от начальной энергии. Согласно

теореме о неравнораспределении (формула (3.50)), Ψ(0) ≈ 0.21.

Будем искать выражение для τe/τa в виде ряда по T0/ε. Коэффициенты

этого ряда находятся следующим образом. Исходя из наблюдения, что интеграл

функции (Txx − Tyy)/T0 по времени от 0 до +∞ пропорционален τa построим

результрующую зависимость от начальной энергии (см. рисунок 3.19).
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Рис. 3.19: Зависимость нелинейного масштаба времени τa от начальной энер-
гии при v0/vd = 0.25, 0.5, 0.75, 1. Численные результаты («кружки»), кубическая
аппроксимация (формула (3.59), сплошная линия), линейная аппроксимация (пунк-
тирная линия).
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Используя результатымолекулярно-динамическогомоделированияпри v0/vd =

0.25, 0.5, 0.75, запишем зависимость τe/τa в виде кубического полинома

τe
τa

≈ T0
ε

+ 1.496

(
T0
ε

)2

− 0.469

(
T0
ε

)3

. (3.59)

Из выражения (3.59) и рисунка (3.19) следует, что при низкой начальной энер-

гии (T0 < 0.05ε) нелинейный масштаб приблизительно можно считать обратно

пропорциональным начальной энергии T0. Проверка результатов молекулярно-

динамического моделирования для (Txx − Tyy)/T0 при v0/vd = 0.05, 0.1, 0.25

подтверждает последнее.

Для того чтоы найти функцию Ψ, построим зависимость Txx − Tyy от време-

ни t/τa, где τa определяется выражением (3.59) при разных значениях T0. Из рисун-

ка 3.20 видно, что кривые при v0/vd = 0.25, 0.5, 0.75 в масштабе рисунка совпадают

между собой. Следовательно, предположение о существовании универсальной
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Рис. 3.20: Универсальная кривая Ψ(t/τa), показывающая перераспределение энер-
гии в ГЦК решетке. Пунктирная линия — значение Ψ(0), полученное с помо-
щью теоремы о неравнораспределении (формула (3.50)), черные «кружки» —
v0/vd = 0.25; синие кресты — v0/vd = 0.5; зелёные звездочки — v0/vd = 0.75;
красные «кружки» — v0/vd = 1.

кривой, описывающей переход к равновесию при различных начальных энергиях
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формулой (3.58), выполняется, по крайней мере, приближённо. При v0/vd = 1 ре-

зультаты дляΨ отклоняются от результатов при меньших значениях v0/vd. Причина

отклонения заключается в несоответсвии значения τe/τa универсальной кривой. В

самом деле, численный анализ показывает, что при v0/vd = 1 τe/τa ≈ 1.07, что не со-

гласуется с выражением (3.59), согласно которому τe/τa ≈ 1.19. По-видимому, при

знначительно сильной нелинейности зависимость от параметра acut/a, отвечающего

за радиус обрезания, начинает сказываться — пренебрежение этим параметром

при определении функции Ψ (см. (3.58)) может оказаться некорректным.

Для анализа функции Ψ на временах t ≫ τa, построим зависимость lnΨ

от t/τa (рисунок 3.21).
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Рис. 3.21: Изменение во времени разницы кинетических энергий в ГЦК решётке
со взаимодействиями Леннард-Джонса. Черные «кружки» — v0/vd = 0.25; синие
кресты — v0/vd = 0.5; зелёные звездочки — v0/vd = 0.75; красные «кружки» —
v0/vd = 1. Пунктирные линии — соответствующие линейные аппроксимации на
больщих временах.

Из рисунка (3.21) видно, что на больших временах функция Ψ затухает

по экспонециальному закону. Аппроксимируя lnΨ при t/τa > 45 при v0/vd =

0.25, 0.5, 0.75 линейной функцией методом наименьших квадратов, получим при-
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ближённое выражение для Ψ на больших временах9

Ψ ≈ Ae−Bt/τa, A = 0.044± 0.004, B = 0.046± 0.005. (3.60)

Таким образом, поведение кинетических энергий Txx и Tyy на больших време-

нах определяется масштабом времени τa, зависящим от начальной энергии T0 (см.

выражение (3.59)) и приблизительно может быть описано функцией Ψ (см. (3.58)),

зависящей только от безразмерного времени t/τa.

3.3 Результаты главы 3
Получено аналитическое решение, описывающее выравнивание кинетиче-

ской и потенциальной энергии и перераспределение энергии по пространственным

направлениям в линейном кристалле с гранецентрированной кубической решёткой

и случайными начальными скоростями. Показано, что колебания средней кинетиче-

ской энергии имеют шесть основных (характерных) частот, и амплитуда колебаний

затухает обратно пропорционально времени.

С использованием численного решения уравнений динамики кристалла с

гранецентрированной кубической решёткой, взаимодействиями Леннард-Джонса и

случайными начальными скоростями показано, что выравнивание кинетических

энергий, соответствующих различным ортогональным направлениям, имеет два

характерных масштаба времени. На малых временах выравнивание может быть

описано в линейном приближении, на больших временах имеет место эволюци-

онный процесс, связанный с влиянием нелинейности. Предложена эмпирическая

зависимость масштаба времени данного процесса от начальной энергии.

Получено аналитическое решение, описывающее затухание синусоидальных

температурных профилей в линейной цепочке масса-в-массе. При малом соотноше-

нии масс (если масса осциллятора много меньше, чем масса частицы, к которой он

прикреплён) получено приближённое аналитическое решение в замкнутой форме,

9Расчёт погрешности для параметров A и B производился методом среднеквадратичного отклонения при
доверительном интервале, равном 0.95.
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описывающее явление «баллистической инверсии спектров».

Показаны качественные признаки баллистического режима переноса энергии

в слабонелинейной цепочке частиц масса-в-массе: две существенно различные кине-

тические энергии и немонотонное затухание синусоидальных профилей (амплитуд

кинетических энергий).

Получено аналитическое решение, описывающее затухание синусоидальных

профилей кинетических энергий в одномерной линейной цепочке масса-в-массе,

связанное с волновым переносом энергии. Получено решение в замкнутой форме

при малом соотношении масс осцилляторов и частиц цепочки. С использованием

численного решения показано, что равные в начальный момент времени кинетиче-

ские энергии, соответствующие цепочке и прикреплённым осцилляторам, различны

в процессе затухания, как при слабой, так и при сильной нелинейности.

После начала возмущения и быстрого процесса, связанным с перераспре-

делением энергии между кинетической и потенциальной формами, в цепочке

масса-в-массе наблюдается «соревнование» двух медленных процессов с разными

масштабами времени: переноса энергии и выравнивания кинетических энергий под-

решёток. При малой нелинейности масштаб времени выравнивания кинетических

энергий гораздо больше масштаба времени переноса энергии — следовательно, те

существенно различаются при данном процессе переноса. С увеличением коэф-

фициента нелинейности масштаб времени выравнивания кинетических энергий

уменьшается, следовательно, этот процесс ускоряется. Таким образом, существует

некоторое пороговое значение коэффициента нелинейности, по превышении ко-

торого процесс выравнивания кинетических энергий становится быстрее, чем их

изменение в ходе переноса энергии. Представляется, что оценка вышеописанных

масштабов времени может быть найдена через кинетическую теорию. Важнейший

шаг в этом направлении сделан в работе [302], где для двухатомной α-ФПУЦ

цепочки выведена система связанных кинетических уравнений для акустических и

оптических квазичастиц. Полагается, что дальнейшее развитие кинетического опи-

сания переноса энергии в двухатомных решётках приведёт к пониманию процесса
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выравнивания кинетических энергий подрешёток.

Ожидается, что результаты настоящей главы могут быть использованы для

развития термомеханики моделей многокомпонетных сплошных сред, в кото-

рых каждая компонента может иметь собственную температуру (см., например,

работы [230, 274, 264, 268]).
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Заключение

Итоги выполненного исследования
Сформулируем результаты, выносимые на защиту:

1. Получено аналитическое решение, описывающее перенос энергии упруги-

ми волнами в полубесконечной линейной цепочке со свободной границей и

произвольным начальным распределением кинетической энергии. Выведены

формулы, описывающие изменение кинетической энергии в континуальном

приближении в виде суммы вкладов падающей и отражённой волн. Показано,

что любое начальное распределение кинетической энергии в полубесконеч-

ной цепочке затухает вблизи границы на больших временах быстрее, чем

аналогичное решение для бесконечной цепочки.

2. Получено аналитическое решение в континуальном приближении, описыва-

ющее перенос энергии упругими волнами в одномерной полубесконечной

линейной цепочке со свободной границей и линейным вязким трением при

стохастическом воздействии в виде белого шума. Показано, в частности, что

при отсутствии трения математическое ожидание кинетической энергии для

частиц вблизи границы на больших временах стремится к константе, а на

удалении от границы — неограниченно растёт (в отличие от бесконечной

цепочки, в которой энергии всех частиц растут).

3. Получено приближённое нестационарное решение для скоростей частиц на

больших временах в полубесконечной линейной цепочке при силовом гранич-

ном условии, заданном периодической внешней силой. В частности, показано

отсутствие роста амплитуды колебаний частиц вблизи границы (в отличие от

бесконечной цепочки, где рост наблюдается в каждой точке).

4. Проведён асимптотический анализ подвода энергии в одномерную полубеско-
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нечную цепочку с кубической нелинейностью при силовом и кинематическом

граничных условиях. Получены приближённые выражения для полной энергии,

закачиваемой в цепочку на больших временах, в том числе на частотах выше

полосы пропускания линейной цепочки.

5. Получено аналитическое решение, описывающее затухание синусоидальных

профилей кинетических энергий при волновом переносе энергии в цепочке

масса-в-массе в линейном приближении. Получено решение в замкнутой

форме при малом соотношении масс осцилляторов и частиц цепочки. С

использованием численного решения показано, что в нелинейном случае

равные в начальный момент времени кинетические энергии, соответствующие

цепочке и прикреплённым осцилляторам, различны в процессе затухания, как

при слабой, так и при сильной нелинейности.

6. Получено аналитическое решение, описывающее выравнивание кинетической

и потенциальной энергий и перераспределение энергий по пространствен-

ным направлениям в линейной гранецентрированной кубической решётке

со случайными начальными скоростями. Показано, что колебания средней

кинетической энергии имеют шесть основных частот, а амплитуда колебаний

затухает обратно пропорционально времени.

7. С использованием численного решения уравнений динамики гранецентрирован-

ной кубической решётки с взаимодействиями Леннард-Джонса и случайными

начальными скоростями показано, что выравнивание кинетических энергий,

соответствующих различным ортогональным направлениям, имеет два харак-

терных масштаба времени. На малых временах выравнивание может быть

описано в линейном приближении, на больших временах имеет место эволюци-

онный процесс, связанный с влиянием нелинейности. Предложена формула,

аппроксимирующая зависимость масштаба времени данного процесса от на-

чальной энергии.
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Перспективы дальнейшего исследования
Основными возможными направлениями дальнейшего исследования являют-

ся:

1. Обобщение результатов диссертационного исследования на задачи переноса

энергии в плоских и пространственных решётках со свободной (или нагружен-

ной) поверхностью или с интерфейсом. Данное обобщение позволит создать

теоретическую основу для корректного описания нестационарного волнового

переноса энергии в диэлектрических материалах и сформировать методические

рекомендации по корректной интерпретации экспериментальных (в частно-

сти, на основе эксперимента методом TTG) данных по тепловым свойствам

материалов.

2. Учёт запаздывания межчастичных взаимодействий [311].

Прочие дальнейшие направления исследования обсуждаются в конце глав диссер-

тации.
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[248] Kovács R., Fehér A., Sobolev S. On the two-temperature description of

heterogeneous materials //International Journal of Heat and Mass Transfer. –

2022. – Т. 194. – С. 123021.

[249] Abbas I., Saeed T., Alhothuali M. Hyperbolic two-temperature photo-thermal

interaction in a semiconductor medium with a cylindrical cavity //Silicon. – 2021.

– Т. 13. – С. 1871-1878.

[250] Fan J., Wang L. Analytical theory of bioheat transport //Journal of Applied Physics.

– 2011. – Т. 109. – №. 10.

[251] Xuan Y., Roetzel W. Bioheat equation of the human thermal system //Chemical

Engineering and Technology: Industrial Chemistry-Plant Equipment-Process

Engineering-Biotechnology. – 1997. – Т. 20. – №. 4. – С. 268-276.



203

[252] Youssef H. M., Alghamdi N. A. The exact analytical solution of the dual-phase-lag

two-temperature bioheat transfer of a skin tissue subjected to constant heat flux

//Scientific Reports. – 2020. – Т. 10. – №. 1. – С. 15946.

[253] Гинзбург В. Л., Шабанский В. П. Кинетическая температура электронов в

металлах и аномальная электронная эмиссия //Докл. АН СССР. – 1955. – Т.

100. – №. 3. – С. 445-448.

[254] КагановМ.И., ЛифшицЕ.М., ТанатаровЛ. В. Релаксациямежду электронами

и решеткой //Журнал экспериментальной и теоретической физики. – 1956. – Т.

31. – №. 2. – С. 232-237.

[255] Wang W., Cahill D. G. Limits to thermal transport in nanoscale metal bilayers due

to weak electron-phonon coupling in Au and Cu //Physical review letters. – 2012. –

Т. 109. – №. 17. – С. 175503.

[256] Mocharnuk-Macchia A. N. et al. Measurement of Electron-Phonon Interactions

in a Gold Film on a Quartz Substrate //AIP Conference Proceedings. – American

Institute of Physics, 2006. – Т. 850. – №. 1. – С. 1603-1604.

[257] Roukes M. L. et al. Hot electrons and energy transport in metals at millikelvin

temperatures //Physical review letters. – 1985. – Т. 55. – №. 4. – С. 422.

[258] Лифшиц И. М., Каганов М. И., Танатаров Л. В. К теории радиационных

изменений в металлах 1 //Атомная энергия. – 1959. – Т. 6. – №. 4. – С. 391-402.

[259] Gurtin M. E., Williams W. O. On the clausius-duhem inequality. – 1966.

[260] Gurtin M. E., Williams W. O. An axiomatic foundation for continuum

thermodynamics. – 1967.

[261] Chen P. J., Gurtin M. E. On a theory of heat conduction involving two temperatures.

– 1968.



204

[262] Анисимов С. И., Капелиович Б. Л., Перельман Т. Л. Электронная эмиссия

с поверхности металлов под действием ультракоротких лазерных импульсов

//Журнал экспериментальной и теоретической физики. – 1974. – Т. 66. – №. 2.

– С. 776-781.

[263] Anisimov S. I. et al. High-energy-density physics and laser technologies //Journal

of Experimental and Theoretical Physics. – 2019. – Т. 129. – С. 757-782.

[264] Sobolev S. L. Two-temperature discrete model for nonlocal heat conduction

//Journal de Physique III. – 1993. – Т. 3. – №. 12. – С. 2261-2269.

[265] Bobylev A. V., Potapenko I. F., Sakanaka P. H. Relaxation of two-temperature

plasma //Physical Review E. – 1997. – Т. 56. – №. 2. – С. 2081.

[266] Potapenko I. F., Bobylev A. V., Mossberg E. Deterministic and stochastic methods

for nonlinear Landau-Fokker-Planck kinetic equations with applications to plasma

physics //Transport Theory and Statistical Physics. – 2008. – Т. 37. – №. 2-4. – С.

113-170.

[267] Индейцев Д. А., Наумов В. Н., Семенов Б. Н. Динамические эффекты в

материалах со сложной структурой //Вестник Самарского государственного

университета. – 2007. – №. 4. – С. 140-168.

[268] Indeitsev, D. A., Naumov, V. N., Semenov, B. N., Belyaev, A. Thermoelastic waves

in a continuum with complex structure //ZAMM-Journal of Applied Mathematics

and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik. – 2009. – Т.

89. – №. 4. – С. 279-287.

[269] Jou D., Sellitto A., Cimmelli V. A. Phonon temperature and electron temperature

in thermoelectric coupling //Journal of Non-Equilibrium Thermodynamics. – 2013.

– Т. 38. – №. 4. – С. 335-361.



205

[270] Sellitto A., Cimmelli V. A., Jou D. Influence of electron and phonon temperature

on the efficiency of thermoelectric conversion //International Journal of Heat and

Mass Transfer. – 2015. – Т. 80. – С. 344-352.

[271] Jou D. Relationships between rational extended thermodynamics and extended

irreversible thermodynamics //Philosophical Transactions of the Royal Society A. –

2020. – Т. 378. – №. 2170. – С. 20190172.

[272] Hoover W. G., Hoover C. G. Hamiltonian dynamics of thermostated systems:

Two-temperature heat-conducting φ4 chains //The Journal of chemical physics. –

2007. – Т. 126. – №. 16.

[273] Hoover W. G., Hoover C. G. Well-posed two-temperature constitutive equations

for stable dense fluid shock waves using molecular dynamics and generalizations

of Navier-Stokes-Fourier continuum mechanics //Physical Review E—Statistical,

Nonlinear, and Soft Matter Physics. – 2010. – Т. 81. – №. 4. – С. 046302.

[274] Youssef H. M. Theory of two-temperature-generalized thermoelasticity //IMA

journal of applied mathematics. – 2006. – Т. 71. – №. 3. – С. 383-390.

[275] Youssef H. M. Theory of two-temperature thermoelasticity without energy

dissipation //Journal of Thermal Stresses. – 2011. – Т. 34. – №. 2. – С. 138-

146.

[276] Youssef H. M., Al-Lehaibi E. A. N. The vibration of viscothermoelastic static

pre-stress nanobeam based on two-temperature dual-phase-lag heat conduction

and subjected to ramp-type heat //The Journal of Strain Analysis for Engineering

Design. – 2023. – Т. 58. – №. 5. – С. 410-421.

[277] Kuzkin V. A., Krivtsov A. M. An analytical description of transient thermal

processes in harmonic crystals //Physics of the Solid State. – 2017. – Т. 59. – С.

1051-1062.



206

[278] Kuzkin V. A. Thermal equilibration in infinite harmonic crystals //Continuum

Mechanics and Thermodynamics. – 2019. – Т. 31. – №. 5. – С. 1401-1423.

[279] Kuzkin V. A. Unsteady ballistic heat transport in harmonic crystals with polyatomic

unit cell //Continuum Mechanics and Thermodynamics. – 2019. – Т. 31. – №. 6. –

С. 1573-1599.

[280] Berinskii I., Kuzkin V. A. Equilibration of energies in a two-dimensional harmonic

graphene lattice //Philosophical Transactions of the Royal Society A. – 2020. – Т.

378. – №. 2162. – С. 20190114.

[281] Panchenko A. Y., Kuzkin V. A., Berinskii I. E. Unsteady ballistic heat transport in

two-dimensional harmonic graphene lattice //Journal of Physics: Condensed Matter.

– 2022. – Т. 34. – №. 16. – С. 165402.

[282] Kannan V., Dhar A., Lebowitz J. L. Nonequilibrium stationary state of a harmonic

crystal with alternating masses //Physical Review E—Statistical, Nonlinear, and

Soft Matter Physics. – 2012. – Т. 85. – №. 4. – С. 041118.

[283] Kato A., Jou D. Breaking of equipartition in one-dimensional heat-conducting

systems //Physical Review E. – 2001. – Т. 64. – №. 5. – С. 052201.

[284] Prigogine I., Henin F. On the general theory of the approach to equilibrium. I.

Interacting normal modes //Journal of mathematical physics. – 1960. – Т. 1. – №. 5.

– С. 349-371.

[285] Kuzkin V. A., Liazhkov S. D. Equilibration of kinetic temperatures in face-centered

cubic lattices //Physical Review E. – 2020. – Т. 102. – №. 4. – С. 042219.

[286] Liazhkov S. D., Kuzkin V. A. Unsteady two-temperature heat transport in mass-in-

mass chains //Physical Review E. – 2022. – Т. 105. – №. 5. – С. 054145.

[287] Boechler N. et al. Interaction of a contact resonance of microspheres with surface

acoustic waves //Physical review letters. – 2013. – Т. 111. – №. 3. – С. 036103.



207

[288] Faver T. E. Small mass nanopteron traveling waves in mass-in-mass lattices with

cubic FPUT potential //Journal of Dynamics and Differential Equations. – 2021. –

Т. 33. – №. 4. – С. 1711-1752.

[289] Ерофеев В. И., Колесов Д. А., Крупенин В. Л. Дисперсия и затухание продоль-

ной волны, распространяющейся в метаматериале, задаваемом как цепочка

«масса-в-массе» //Вестник Пермского национального исследовательского по-

литехнического университета. Механика. – 2019. – №. 4. – С. 6-18.

[290] Porubov A. V., Grekova E. F. On nonlinear modeling of an acoustic metamaterial

//Mechanics Research Communications. – 2020. – Т. 103. – С. 103464.

[291] PorubovA.V.Wavemodulation in a nonlinear acousticmetamaterial //International

Journal of Non-Linear Mechanics. – 2021. – Т. 137. – С. 103788.

[292] Бабенков М. Б., Кривцов А. М., Цветков Д. В. Колебания энергий в од-

номерном гармоническом кристалле на упругом основании //Физическая

мезомеханика. – 2016. – Т. 19. – №. 1. – С. 60-67.

[293] Kuzkin V. A., Krivtsov A. M. Fast and slow thermal processes in harmonic scalar

lattices //Journal of Physics: Condensed Matter. – 2017. – Т. 29. – №. 50. – С.

505401.

[294] Кривцов А. М. Распространение тепла в бесконечном одномерном гармони-

ческом кристалле //Доклады академии наук. – Федеральное государственное

бюджетное учреждение «Российская академия наук», 2015. – Т. 464. – №. 2. –

С. 162-162.

[295] Huberman S. et al. Observation of second sound in graphite at temperatures above

100 K //Science. – 2019. – Т. 364. – №. 6438. – С. 375-379.

[296] Ding Z. et al. Observation of second sound in graphite over 200 K //Nature

communications. – 2022. – Т. 13. – №. 1. – С. 285.



208

[297] Candy J., RozmusW.A symplectic integration algorithm for separableHamiltonian

functions //Journal of Computational Physics. – 1991. – Т. 92. – №. 1. – С. 230-256.

[298] McLachlan R. I., Atela P. The accuracy of symplectic integrators //Nonlinearity. –

1992. – Т. 5. – №. 2. – С. 541.

[299] Xiong D., Zhang Y., Zhao H. Heat transport enhanced by optical phonons in

one-dimensional anharmonic lattices with alternating bonds //Physical Review

E—Statistical, Nonlinear, and Soft Matter Physics. – 2013. – Т. 88. – №. 5. – С.

052128.

[300] Korznikova, E. A., Kuzkin, V.A., Krivtsov, A.M., Xiong, D., Gani, V. A., Kudreyko,

A. A., Dmitriev, S. V. Equilibration of sinusoidal modulation of temperature in

linear and nonlinear chains //Physical Review E. – 2020. – Т. 102. – №. 6. – С.

062148.

[301] Allen M. P. et al. Computer simulation of liquids. – 1987.

[302] Pezzi A. et al. Three-wave resonant interactions in the diatomic chain with cubic

anharmonic potential: theory and simulations //arXiv preprint arXiv:2103.08336. –

2021.

[303] Podolskaya E. A., Krivtsov A. M. Description of the geometry of crystals with a

hexagonal close-packed structure based on pair interaction potentials //Physics of

the Solid State. – 2012. – Т. 54. – С. 1408-1416.

[304] Kuzkin V. A. Acoustic transparency of the chain-chain interface //Physical Review

E. – 2023. – Т. 107. – №. 6. – С. 065004.

[305] Lundstrom M. Fundamentals of Carrier Transport. 2nd edn Cambridge University

Press: Cambridge. – 2000.

[306] R. Wong, Asymptotic Approximation of Integrals (Academic Press, New York,

1989)



209

[307] Tsaplin V. A., Kuzkin V. A. Temperature oscillations in harmonic triangular lattice

with random initial velocities //arXiv preprint arXiv:1709.04670. – 2017.

[308] Le-Zakharov A. A., Krivtsov A. M. Molecular dynamics investigation of heat

conduction in crystals with defects //Doklady Physics. – 2008. – Т. 53. – №. 5.

[309] Кориков Д. В. Асимптотическое описание быстрых тепловых процессов в

скалярных гармонических решетках //Физика твердого тела. – 2020. – Т. 62. –

№. 11. – С. 1982-1991.

[310] Barenblatt G. I. Scaling, self-similarity, and intermediate asymptotics: dimensional

analysis and intermediate asymptotics. – Cambridge University Press, 1996. –№. 14.

[311] Zakharov A. Y. On the microscopic origin of thermodynamics and kinetics. Status

and prospects //Physics Letters A. – 2025. – Т. 534. – С. 130227.


	Введение
	Основные обозначения
	Перенос энергии в полубесконечной линейной цепочке со свободной границей
	Перенос энергии в полубесконейной цепочке при заданном начальном распределении энергии
	Постановка задачи
	Точное выражение для скоростей частиц
	Точное выражение для кинетической энергии
	Кинетическая энергия в континуальном пределе
	Сравнение аналитического и численного решений

	Перенос энергии в полубесконечной цепочке при наличии подвода
	Постановка задачи
	Дискретное решение для кинетической энергии
	Кинетическая энергия в континуальном пределе
	Пример. Мгновенный подвод энергии
	Пример. Внезапный точечный подвод
	Сравнение аналитических и численных решений

	Результаты главы 1

	Подвод энергии в полубесконечную цепочку при силовом и кинематическом нагружении на границе
	Подвод при силовом нагружении на границе
	Постановка задачи
	Точное решение для скоростей частиц в линейной цепочке
	Приближённое решение для скоростей частиц в линейной цепочке
	Подвод энергии в линейную цепочку
	Влияние нелинейности

	Подвод при кинематическом нагружении на границе
	Постановка задачи
	Подвод энергии в линейную цепочку
	Влияние нелинейности

	Результаты главы 2

	Влияние нелинейности на перераспределение энергии между степенями свободы в упругих твёрдых телах
	Перенос энергии в цепочке масса-в-массе
	Постановка задачи
	Перенос энергии в линейной цепочке масса-в-массе
	Влияние нелинейности

	Переходные процессы в гранецентрированной кубической решётке
	Постановка задачи
	Дисперсионное соотношение
	Переход к равновесию в линейной ГЦК решётке
	Влияние нелинейности

	Результаты главы 3

	Заключение
	Список литературы

